Skip to main content
Log in

Breathhold cardiac MRI and MRA

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

Recent developments in MRI software and hardware have increased the speed and versatility of cardiac MRI by allowing image acquisition in a single breathhold. Many studies have shown that conventional cardiac MRI is as accurate as echocardiography or cardiac catheterization for diagnosing numerous cardiac conditions. In many cases cardiac MRI is the most accurate diagnostic technique but has not been widely adopted for routine cardiac imaging. One reason why the use of cardiac MRI has been limited is the long examination times required for conventional cardiac MRI. The development of better hardware, such as faster gradient amplifiers and dedicated surface coils, has allowed the implementation of much faster EKG-gated imaging sequences. These can be used in a single breathhold period, with a significant improvement in image quality compared with conventional sequences. Breathhold sequences can provide all the information provided by conventional cardiac MRI in a shorter time and with equal or better accuracy. Breathhold imaging will allow much wider application of MRI to routine cardiac diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sayad DE, Clarke GD, Peshock RM. Magnetic resonance imaging of the heart and its role in current cardiology. Curr Opin Cardiol 1995: 10: 640-649.

    Google Scholar 

  2. Higgins CB, Caputo GR. Role of MR imaging in acquired and congenital cardiovascular disease. Am J Roentgenol 1993; 161(1): 13-22.

    Google Scholar 

  3. Hartiala J, Knuuti J. Imaging of the heart by MRI and PET. Ann Med 1995; 27: 35-45.

    Google Scholar 

  4. Boxerman JL, Mosher TJ, McVeigh ER, Atalar E, Lima JAC, Bluemke DA. Advanced MR imaging techniques for evaluation of the heart and great vessels. Radiographics 1998; 18: 543-564.

    Google Scholar 

  5. Simonetti OP, Finn JP, White RD, Laub G, Henry DA. “Black blood” T2-weighted inversion-recovery MR imaging of the heart. Radiology 1996; 199: 49-57.

    Google Scholar 

  6. Bluemke DA, Boxerman JL, Atalar E, McVeigh ER. Segmented k-space cine breath-hold cardiovascular MR imaging: Part 1. Principles and technique. AJR 1997: 169: 395-400.

    Google Scholar 

  7. McVeigh ER. MRI of myocardial function: motion tracking techniques. Magnetic Resonance Imaging 1996; 14: 137-150.

    Google Scholar 

  8. Matsumura K, Nakase E, Haiyama T, Utsunomiya S. Automatic left ventricular volume measurements on contrast-enhanced ultrafast cine magnetic resonance imaging. Eur J Radiol 1995; 20(2): 126-132.

    Google Scholar 

  9. Chien D, Merboldt KD, Bruhn H, et al. Advances in cardiac applications of subsecond FLASH MRI. Magn Reson Imaging 1990; 8: 829-836.

    Google Scholar 

  10. Bloomgarden DC, Fayad ZA, Ferrari VA, Chin B, Sutton MG, Axel L. Global cardiac function using fast breathhold MRI: validation of new acquisition and analysis techniques. Magnetic Resonance in Medicine 1997; 37: 683-692.

    Google Scholar 

  11. Hartnell GG. New developments in cardiac MRI and MRA. Hosp Med 1998; 59: 567-573.

    Google Scholar 

  12. Higgins CB, Sakuma H. Heart disease: Functional evaluation with MR imaging. Radiology 1996; 199: 307-315.

    Google Scholar 

  13. Rogers LF. The heart of the matter: Noninvasive coronary artery imaging. AJR 1998; 170: 1998.

    Google Scholar 

  14. Hartnell GG, Cerel A, Kamalesh M, Finn JP, Hill T, Cohen MC, Tello R, Lewis SM. Detection of Myocardial Ischemia: Value of combined myocardial perfusion and cineangiographic MR imaging. AJR 1994; 163; 1061-1067.

    Google Scholar 

  15. Wilke N, Jerosch-Herold M, Wang Y, et al. Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 1997; 204: 373-384.

    Google Scholar 

  16. Hartnell GG, Finn JP, Zenni M, Cohen MC, Dupuy D, Wheeler H, Longmaid HE. Magnetic resonance imaging of the thoracic aorta: A comparison of spin echo, angiographic and breathhold techniques. Radiology 1994; 191; 697-704.

    Google Scholar 

  17. Hartnell GG, Hughes LA, Finn JP, Longmaid HE. Magnetic resonance angiography of the central chest veins: A new gold standard? Chest 1995; 107(4): 1053-1057.

    Google Scholar 

  18. Hartnell GG, Charlamb C, Cohen MC, Saouaf R, Simonetti OP, Finn JP. Breathhold cardiac MRI-improvements in image quality with use of turbo spin echo, turboSTIR, HASTE and breathhold cine MRA compared with standard techniques. 82nd Scientific Assembly and Annual Meeting RSNA, Chicago, December (Abstract). Radiology 1996; 201 (P): 273-274.

    Google Scholar 

  19. Higgins CB, Wagner S, Kondo C, Suzuki J, Caputo GR. Evaluation of valvular heart disease with cine gradient echo magnetic resonance imaging. Circulation 1991; 84(3 Suppl): 1198-1207.

    Google Scholar 

  20. Krinsky GA, Rofsky NM, DeCorato DR, et al. Thoracic aorta: Comparison of gadolinium-enhanced three-dimensional MR angiography with conventional MR imaging. Radiology 1997; 202(1): 183-193.

    Google Scholar 

  21. Prince MR, Narasimham DL, Jacoby WT, et al. Three-dimensional gadolinium-enhanced MR angiography of the thoracic aorta. AJR 1996; 166(6): 1387-97.

    Google Scholar 

  22. Bluemke DA, Boxerman JL, Mosher T, Lima JAC. Segmented k-space cine breath-hold cardiovascular MR imaging: part 2. Evaluation of aortic vasculopathy. AJR 1997: 169: 401-407.

    Google Scholar 

  23. Hartnell GG, Hughes LA, Ko JP, Cohen MC. MRI of pericardial constriction: Comparison of cine MR angiography and spin echo techniques. Clinical Radiology 1996; 51: 268-272.

    Google Scholar 

  24. Lee VS, Spritzer CE, Carroll BA, et al. Flow quantification using fast cine phase-contrast MR imaging, conventional cine phase-contrast MR imaging, and Doppler sonography: In vitro and in vivo validation. AJR 1997; 169: 1125-1131.

    Google Scholar 

  25. Hartnell GG, Cohen MC, Meier RA, Finn JP. Magnetic resonance angiography demonstration of congenital heart disease in adults. Clinical Radiology 1996; 51: 851-857.

    Google Scholar 

  26. Kramer CM, Rogers WJ, Theobald TM, Power TP, Geskin G, Reichek N. Dissociation between changes in intramyocardial function and left ventricular volumes in the eight weeks after first anterior myocardial infarction. J Am Coll Cardiol 1997; 30: 1625-1632.

    Google Scholar 

  27. McConnell MV, Ganz P, Selwyn AP, Li W, Edelman RR, new Manning WJ. Identification of anomalous coronary arteries and their anatomic course by magnetic resonance angiography. Circulation 1995; 92: 3158-3162.

    Google Scholar 

  28. Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 1993; 328: 828-832.

    Google Scholar 

  29. Hundley WG, Clarke GD, Landau C, et al. Noninvasive determination of infarct artery patency by cine magnetic resonance angiography. Circulation 1995; 91: 1347-1353.

    Google Scholar 

  30. Goldfarb JW, Edelman RR. Coronary arteries: Breathhold, gadolinium-enhanced, three-dimensional MR angiography. Radiology 1998; 206: 830-834.

    Google Scholar 

  31. Vrachliotis TG, Bis KG, Aliabadi D, Shetty AN, Safian R, Simonetti O. Contrast-enhanced breath-hold MR angiography for evaluating patency of coronary artery bypass grafts. AJR 1997; 168: 1073-1080.

    Google Scholar 

  32. Edelman RR, Manning WJ, Gervino E, Li W. Flow velocity quantification in human coronary arteries with fast, breathhold MR angiography. JMRI 1993; 3: 699-703.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartnell, G.G. Breathhold cardiac MRI and MRA. Int J Cardiovasc Imaging 15, 139–150 (1999). https://doi.org/10.1023/A:1006138713163

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006138713163

Keywords

Navigation