Skip to main content
Log in

Location of induced mutations and reversions in the chloroplast genome of Helianthus annuus

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

A chloroplast DNA mutation site associated with the ‘chlorina’ phenotype was identified in mutant lines en:chlorina-7 of Helianthus annuus. Following nitroso-methyl urea (NMU)-retreatment of the en:chlorina-7 mutant maternally inherited revertants in terms of leaf colour and plant vigour were obtained. Thorough restriction analysis revealed rearrangements in revertant (r-en:chlorina) cpDNA. The restoration of the original cpDNA pattern correlated with the correction of chlorophyll deficiency in green revertants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wong-Staal F and Wildman S (1973) Identification of a mutation in chloroplast DNA correlated with formation of defective chloroplasts in variegated mutant of Nicotiana tabacum. Planta 113: 313–326

    Google Scholar 

  2. Schaffiner C, Laasch H and Hagemann R (1995) Detection of a point mutations in chloroplast genes of Antirrhinum majus L. I. Identification of a point mutation in the psaB gene of a photosystem I plastom mutant. Mol Gen Genet 249: 533–544

    Google Scholar 

  3. Hagemann R, Bock R and Hagemann M (1996) Extranuclear inheritance: plastid genetics. Progress in Botany 57: 46–56

    Google Scholar 

  4. Bock R, Kossel H and Maliga P (1994) Introduction of a heterologous editing site into the tobacco plastid genome: the lack of RNA editing leads to a mutant phenotype. The EMBO Journal 13(19): 4623–4628

    Google Scholar 

  5. Johnson E, Schaberlrauch and Sears B (1991) A plastome mutation affects processing of both chloroplast and nuclear DNA-encoded plastid proteins. Mol Gen Genet 225: 106–112

    Google Scholar 

  6. Hagemann R (1982) Induction of plastom mutations by nitroso-urea-compounds. In: Edelman M, Hallick RB and Chua NH (eds) Methods in Chloroplast Molecular Biology, pp 119–127. Amsterdam: Elsevier

    Google Scholar 

  7. Hosticka L and Hanson M (1984) Induction of plastid mutations in tomatoes by nitrosomethylurea. The Journal of Heredity 75: 242–246

    Google Scholar 

  8. Beletski Y, Razoriteleva E and Zhdanov Y (1969) Cytoplasmatic mutations of sunflower induced by N-nitroso-N-methylurea (In Russian). Dokl Ak Nauk SSSR 186: 1425–1426

    Google Scholar 

  9. Beletski Y and Razoriteleva E (1972) Extrachromosomal mutations of sunflower 1. Cytological analysis of variegated plants (In Russian). Genetika 8(1): 17–22

    Google Scholar 

  10. Beletski Y, Fedorenko G, Razoriteleva E and Stepanova L (1981) Reversion in plastom chlorina mutant of sunflower (In Russian). Tsitologia i Genetika 1: 34–38

    Google Scholar 

  11. Turischeva M, Taran S, Beletski Y, Belkina G and Odintsova (1987) Structure and functions of chloroplasts in viable plastome mutants of sunflower (In Russian). Phiziologia rastenii 34-36: 1097–1102

    Google Scholar 

  12. Gustafsson A (1940) The mutation system of the chlorophyll apparatus. Lunds Univ Arsskrift. NF Adv 2 36: 1–40

    Google Scholar 

  13. Hagemann R (1971) Struktur und Funktion der genetischen Information in den Plastiden I. Die Bedeutung von Plastommutanten und die genetische Nomenklatur extranuklearer Mutationen. Biol Zbl 90(4): 409–418

    Google Scholar 

  14. Triboush S, Danilenko N and Davydenko O (1998) A method for isolation of chloroplast DNA and mitochondrial DNA from sunflower. Plant Molecular Biology Reporter 16: 183–189

    Google Scholar 

  15. Razoriteleva E, Beletski Y and Zhdanov Y (1970) The genetically nature of mutations induced by N-nitroso-N-methyl urea in sunflower. II. Themutations chlorina (In Russian). Genetika 6: 102–107

    Google Scholar 

  16. Rochaix J.-D (1997) Chloroplast reverse genetics: new insights into the function of plastid genes. Trends in Plant Science 2(11): 419–425

    Google Scholar 

  17. Richardson F and Richardson K (1990) Sequence-dependent formation of alkyl DNA adducts: A review of methods, results, and biological correlates. Mutation Research 233: 127–138

    Google Scholar 

  18. Serebryanyi A, Sal'nikova L, Bakhitova L and Paschin Y (1990) Role of the carbamoylation reaction in the biological activity of methyl nitrosourea. Mutation Research 231: 195–203

    Google Scholar 

  19. Beranek D (1990) Distribution of methyl and ethyl adducts following alkylation with monofunktional alkylating agents. Mutation Research 231: 11–30

    Google Scholar 

  20. Imai Y (1936) Chlorophyll variegations due to mutable genes and plastids. Z Indukt Abstammungs-und Vererbungslehre 71: 61–83

    Google Scholar 

  21. Kirk J and Tilney-Bassett R (1967) The Plastids. Their Chemistry, Structure, Growth and Inheritance. London and San Francisco: W.H. Freeman and Co.

    Google Scholar 

  22. Samsonova I and Bottcher F (1976) Studies on the mutability of plastom IV. Effect of X-rays, etylmethanesulphonate, ethylene imine and nitrozoethylurethane on the frequency of reverse mutations in the plastom tomato mutant Pl-alb1 (In Russian). Genetika XII(1): 41–46

    Google Scholar 

  23. Spreitzer R, Thow G. and Zhu G (1995) Pseudoreversion substitution at large-subunit residue 54 influences the CO2/O2 specificity of chloroplast ribulose-biphosphate carboxylase/oxygenase. Plant Physiol 109: 681–685

    Google Scholar 

  24. Heyrad F, Serror P, Kuntz M, Steinmetz A and Heizmann P (1987) Physical map and gene localisation on sunflower (Helianthus annuus) chloroplast DNA: evidence for an inversion of a 23.5-kpb segment in the large single copy region. Plant Mol Biol 9: 485–496

    Google Scholar 

  25. Hipkins V, Marshall K, Neale D, Rottmann W and Strauss S (1995) A mutation hotspot in the chloroplast genome of a conifer (Douglas-fir:Pseudotsuga) is caused by variability in the number of direct repeats derived from a partially duplicated tRNA gene. Curr Genet 27: 572–579

    Google Scholar 

  26. Tassopulu D and Kung S (1984) Nicotiana chloroplast genome. 6. Deletion and hotspot - a proposed origin of the inverted repeats. Theor Appl Genet 67: 185–193

    Google Scholar 

  27. Maier R, Neckermann K, Igloi G and Kossel H (1995) Complete sequence of the maize chloroplast genome:gene content, hotspot of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251(5): 614–628

    Google Scholar 

  28. Chiu W, Johnson E, Kaplan S, Blasko K, Sokalski M, Wolfson R and Sears B (1990) Oenothera chloroplast DNA polymorphism associated with plastome mutator activity. Mol Gen Genet 221: 59–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Triboush.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triboush, S.O., Danilenko, N.G., Ulitcheva, I.I. et al. Location of induced mutations and reversions in the chloroplast genome of Helianthus annuus. Plant Growth Regulation 27, 75–81 (1999). https://doi.org/10.1023/A:1006117114857

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006117114857

Navigation