Skip to main content
Log in

Energy coupling and ATP synthase

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abrahams JP, Leslie AGW, Lutter R and Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621-628

    Google Scholar 

  • Aggeler R, Haughton MA and Capaldi RA (1995) Disulfide bond formation between the COOH-terminal domain of the beta subunits and the gamma and epsilon subunits of the Escherichia coli F1-ATPase. Structural implications and functional consequences. J Biol Chem 270: 9185-9191

    Google Scholar 

  • Aggeler R, Ogilvie I and Capaldi RA (1997) Rotation of a γ-ε subunit domain in the Escherichia coli F1F0-ATP synthase complex. The γ-ε subunits are essentially randomly distributed relative to the α3β3δ domain in the intact complex. J Biol Chem 272: 19621-19624

    Google Scholar 

  • Alexov EG and Gunner MR (1997) Incorporating protein conformational flexibility into the calculation of pH-dependent protein properties. Biophys J 71: 2075-2093

    Google Scholar 

  • Arselin G, Vaillier J, Graves P-V and Velours J (1996) ATP synthase of yeast mitochondria. Isolation of the subunit h and disruption of the ATP14 gene. J Biol Chem 271: 20284-20290

    Google Scholar 

  • Bakker-Grunwald T and van Dam K (1974) On the mechanism of activation of the ATPase in chloroplasts. Biochim Biophys Acta 347: 290-298

    Google Scholar 

  • Bar-Zvi D and Shavit N (1982) Modulation of the chloroplast ATPase by tight ADP binding. Effect of uncouplers and ATP. J Bioenerg Biomembr 14: 467-478

    Google Scholar 

  • Berry EA and Hinkle PC (1983) Measurement of the electrochemical proton gradient in submitochondrial particles. J Biol Chem 258: 1474-1486

    Google Scholar 

  • Berry S and Rumberg B (1996) H+/ATP coupling ratio at the unmodulated CF0CF1-ATP synthase determined by proton flow measurements. Biochim Biophys Acta 1276: 51-56

    Google Scholar 

  • Biaudet P and Haraux F (1987) ΔpH-dependent activation of chloroplast coupling factors and external pH effects on the 9-aminoacridine response in lettuce and spinach thylakoids. Biochim Biophys Acta 893: 544-556

    Google Scholar 

  • Biaudet P, de Kouchkovsky F and Haraux F (1988) ΔpH-activation of the thiol-modified chloroplast ATP hydrolase. Nucleotide binding effects. Biochim Biophys Acta 933: 487-500

    Google Scholar 

  • Bizouarn T, de Kouchkovsky Y and Haraux F (1989) Photophosphorylation at variable ADP concentration but constant ΔpH in lettuce thylakoids. Effect of ΔpH and phosphate on the apparent affinity for ADP. Biochim Biophys Acta 974: 104-113

    Google Scholar 

  • Bizouarn T, de Kouchkovsky Y and Haraux F (1991) Dependence of kinetic parameters of chloroplast ATP synthase on external pH, internal pH, and ΔpH. Biochemistry 30: 6847-6853

    Google Scholar 

  • Boekema EJ, Xiao J and McCarty RE (1990) Structure of the ATP synthase from chloroplasts studied by electron microscopy. Localization of the small subunits. Biochim Biophys Acta 1020: 49-56

    Google Scholar 

  • Boork J and Wennerström H (1984) The influence of membrane potentials on reaction rates control in energy-transduction systems. Biochim Biophys Acta 767: 314-320

    Google Scholar 

  • Boyer PD (1993) The binding change mechanism for ATP synthase. Some probabilities and possibilities. Biochim Biophys Acta 1140: 215-250

    Google Scholar 

  • Boyer PD (1997) The ATP synthase - a splendid molecular machine. Annu Rev Biochem 66: 717-749

    Google Scholar 

  • Büchel C and Garab G (1997) Respiratory regulation of electron transport in chloroplasts: chlororespiration. In: Pessarakli M (ed) Handbook of Photosynthesis, pp 83-93. Marcel Dekker, New York

    Google Scholar 

  • Cain BD and Simoni RD (1988) Interaction between Glu-219 and His-245 within the a subunit of F1F0 ATPase in E.icoli. J Biol Chem 263: 6606-6612

    Google Scholar 

  • Cain BD and Simoni RD (1989) Proton translocation by the F1F0 ATPase of E. coli: Mutagenic analysis of the a subunit. J Biol Chem 264: 3292-3300

    Google Scholar 

  • Carmeli C and Lifshitz Y (1972) Effects of Pi and ADP on ATPase activity in chloroplasts. Biochim Biophys Acta 267: 86-95

    Google Scholar 

  • Cerione RA, McCarty RE and Hammes GG (1983) Spatial relationships between specific sites on the reconstituted chloroplast proton adenosinetriphosphatase and the phospholipid vesicle surface. Biochemistry 22: 769-776

    Google Scholar 

  • Chance B and Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 217: 409-427

    Google Scholar 

  • Chernyak BV, Khodjaev EY and Kozlov IA (1985) The oxidation of sulfhydryl groups in mitochondrial F1-ATPase decreases the rates of its inactivation by the natural protein inhibitor. FEBS Lett 187: 253-256

    Google Scholar 

  • Chernyak BV, Sigalat C, Diolez P and Haraux F (1995) Enzyme turnover is essential for deactivation of F0F1-ATPase in plant mitochondria. Biochim Biophys Acta 1229: 121-128

    Google Scholar 

  • Coty WA and Pedersen PL (1974) Phosphate transport in rat liver mitochondria. Kinetics and energy requirements. J Biol Chem 249: 2593-2598

    Google Scholar 

  • Cross RL and Taiz L (1990) Gene duplication as a means for altering H+/ATP ratios during the evolution of F0F1 ATPases and synthases. FEBS Lett 259: 227-230

    Google Scholar 

  • Davenport JW and McCarty RE (1986) Relationships between rates of steady-state ATP synthesis and the magnitude of the protonactivity gradient across thylakoid membranes. Biochim Biophys Acta 851: 136-145 s

    Google Scholar 

  • de Kouchkovsky Y and Sigalat C (1995) Membrane permeability and energy coupling. In: Mathis P (ed) Photosynthesis: From Light to Biosphere. Vol III, pp 163-166. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Di Pietro A, Fellous G, Godinot C and Gautheron DC (1986) Role of phosphate on the ADP-induced hysteretic inhibition of mitochondrial adenosine 5′-triphosphatase. Effects of the natural inhibitor. Biochim Biophys Acta 851: 283-294

    Google Scholar 

  • Dimroth P (1997) Primary sodium ion translocating enzymes. Biochim. Biophys. Acta 1318: 11-51

    Google Scholar 

  • Duncan TM, Bulygin VV, Zhou Y, Hutcheon ML and Cross RL (1995) Rotation of subunits during catalysis by Escherichia coli F1-ATPase. Proc Natl Acad Sci USA 92: 10964-10968

    Google Scholar 

  • Engelbrecht S and Junge W (1997) ATP synthase: a tentative structural model. FEBS Lett 414: 485-491

    Google Scholar 

  • Evron Y and Avron M (1990) Characterization of an alkaline pH-dependent proton "slip' in the ATP synthase of lettuce thylakoids. Biochim Biophys Acta 1019: 115-120

    Google Scholar 

  • Feldman RI and Sigman DS (1982) The synthesis of enzyme-bound ATP by soluble chloroplast coupling factor 1. J Biol Chem 257: 1676-1683

    Google Scholar 

  • Ferguson SJ (1985) Fully delocalised chemiosmotic or localised proton pathways in energy coupling? A scrutiny of experimental evidence. Biochim Biophys Acta 811: 47-95

    Google Scholar 

  • Fillingame RH (1992) Subunit c of F1F0 ATP synthase: structure and role in transmembrane energy transduction. Biochim Biophys Acta 1101: 240-243

    Google Scholar 

  • Fitin AF, Vasilyeva EA and Vinogradov AD (1979) An inhibitor high affinity binding site for ADP in the oligomycin-sensitive ATPase of beef heart submitochondrial particles. Biochem Biophys Res Comm 86: 434-439

    Google Scholar 

  • Fraga D, Hermolin J and Fillingame RH (1994) Transmembrane helix-helix interactions in F0 suggested by suppressor mutations to Ala24 →Asp/Asp61 → Gly mutant of ATP synthase subunit c. J Biol Chem 269: 2561-2567

    Google Scholar 

  • Fritsche O and Junge W (1996) Chloroplast ATP synthase: the clutch between proton flow and ATP synthesis is at the interface of subunit γ and CF1. Biochim Biophys Acta 1274: 94-100

    Google Scholar 

  • Futai M and Omote H (1996) F-type H+ ATPase (ATP synthase): catalytic site and energy coupling. In: Konings WN, Kaback H and Lolkema JS (eds) Transport Processes in Eukaryotic and Prokaryotic Organisms Handbook of Biological Physics, Vol 2, pp 47-74. Elsevier Science, Amsterdam, The Netherlands

    Google Scholar 

  • Girvin ME and Fillingame RH (1995) Determination of local protein structure by spin label difference 2D NMR: the region neighboring Asp61 of subunit c of the F1F0 ATP synthase. Biochemistry 34: 1635-1645

    Google Scholar 

  • Gräber P, Junesch U and Schatz GH (1984) Kinetics of protontransport-coupled ATP synthesis in chloroplasts. Activation of the ATPase by an artificially generated ΔpH and ΔΨ. Ber Bunsenges Phys Chem 88: 599-608

    Google Scholar 

  • Gräber P, Junesch U and Thulke G (1987) The chloroplast ATPsynthase: the rate of the catalytic reaction. In: Biggins J (ed) Progress in Photosynthesis Research, Vol III, pp 177-184. Martinus Nijhoff Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Gräber P, Schlodder E and Witt HT (1977) Conformational change of the chloroplast ATPase induced by a transmembrane electric field and its correlation to phosphorylation. Biochim Biophys Acta 461: 426-440

    Google Scholar 

  • Griwatz C and Junge W (1992) Cooperative transient trapping of protons by structurally distorted chloroplast ATPase: Evidence for the proton well? Biochim Biophys Acta 1101: 244-248

    Google Scholar 

  • Groth G and Junge W (1994) ATP synthase: activating versus catalytic proton transfer. FEBS Lett 358: 142-144

    Google Scholar 

  • Groth G and Walker JE (1997) Model of the c-subunit oligomer in the membrane domain of F1-ATPase. FEBS Lett 410: 117-123

    Google Scholar 

  • Hall DO (1976) The coupling of photophosphorylation to electron transport in isolated chloroplasts. In: Barber J (ed) The Intact Chloroplast, pp 135-170. Elsevier Science, Amsterdam, The Netherlands

    Google Scholar 

  • Hangarter RP and Good NE (1982) Energy thresholds for ATP synthesis in chloroplasts. Biochim Biophys Acta 681: 397-404

    Google Scholar 

  • Hansen U-L, Gradmann D and Slayman C (1981) Interpretation of current-voltage relationships for 'active' ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms. J Membr Biol 63: 165-190

    Google Scholar 

  • Harris DA and Das AM (1991) Control of mitochondrial ATP synthesis in the heart. Biochem J 280: 561-573

    Google Scholar 

  • Harris DA and Slater EC (1975) Tightly bound nucleotides in the energy-transducing ATPase of chloroplasts and their role in photophosphorylation. Biochim Biophys Acta 387: 335-348

    Google Scholar 

  • Hashimoto T, Yoshida Y and Tagawa K (1990) Regulatory proteins of F1F0-ATPase: Role of ATPase inhibitor. J Bioenerg Biomembr 22: 27-38

    Google Scholar 

  • Heckman C, Tomich J M and Hatefi Y (1991) Mitochondrial ATP synthase complex. Membrane topography and stoichiometry of the F0 subunits. J Biol Chem 266: 13564-13571

    Google Scholar 

  • Heinen G and Strotmann H (1989) Photophosphorylation as function of ADP concentration at varying transmembrane proton gradients. Z Naturforsch 44c: 473-479

    Google Scholar 

  • Hinkle PC, Kumar MA, Resetar A and Harris DL (1991) Mechanistic stoichiometry of mitochondrial phosphorylation. Biochemistry 30: 3576-3582

    Google Scholar 

  • Howitt SM, Rodgers AJW, Hatch LP, Gibson F and Cox GB (1996) the coupling of the relative movements of the a and c subunits of the F0 to the conformational changes in the F1-ATPase. J Bioenerg Biomembr 28: 415-420

    Google Scholar 

  • Husain I, Jackson PJ and Harris DA (1985) Interaction between F1-ATPase and its naturally occurring inhibitor protein. Studies using a specific anti-inhibitor antibody. Biochim Biophys Acta 767: 64-74

    Google Scholar 

  • Jackson PJ and Harris DA (1988) The mitochondrial ATP synthase inhibitor protein binds near the C-terminus of the F1 β-subunit. FEBS Lett 229: 224-228

    Google Scholar 

  • Jagendorf AT and Uribe E (1966) ATP formation caused by acidbase transition of spinach chloroplast. Proc Natl Acad Sci USA 55: 170-177

    Google Scholar 

  • Joliot P and Joliot A (1980) Dependence of delayed luminescence upon adenosine triphosphatase activity in Chlorella. Plant Physiol 65: 691-696

    Google Scholar 

  • Junesch U and Gräber P (1987) Influence of the redox state and the activation of the chloroplast ATP synthase on proton-transport coupled ATP synthesis/hydrolysis. Biochim Biophys Acta 893: 275-288

    Google Scholar 

  • Junesch U and Gräber P (1991) The rate of ATP-synthesis as a function of ΔpH and ΔΨ catalyzed by the active, reduced H+-ATPase from chloroplasts. FEBS Lett 294: 275-278

    Google Scholar 

  • Jung DW and Hanson JB (1973) Respiratory activation of 2,4-dinitrophenol-stimulated ATPase activity in plant mitochondria. Arch Biochem Biophys 158: 139-148

    Google Scholar 

  • Ketcham SR, Davenport JW, Warncke K and McCarty RE (1984) Role of the γ subunit of chloroplast coupling factor 1 in the light-dependent activation of photophosphorylation and ATPase activity by dithiothreitol. J Biol Chem 259: 7286-7293

    Google Scholar 

  • Khodjaev EY, Komarnitsky FB, Capozza G, Dukhovich VF, Chernyak BV and Papa S (1990) Activation of a complex of ATPase with the natural protein inhibitor in submitochondrial particles. FEBS Lett 272: 145-148

    Google Scholar 

  • Kleefeld S, Lohse D and Strotmann H (1990) Activation and deactivation of the thiol-modulated chloroplast H+-ATPase during ATP hydrolysis. Biochim Biophys Acta 1019: 11-18

    Google Scholar 

  • Klingenberg M and Rottenberg H (1977) Relation between the gradient of the ATP/ADP ratio and the membrane potential across the mitochondrial membrane. Eur J Biochem 73: 125-130

    Google Scholar 

  • Komatsu-Takaki M (1989) Energy-dependent conformational changes in the ε subunit of the chloroplast ATP synthase (CF0CF1) J Biol Chem 264: 17750-17753

    Google Scholar 

  • Komatsu-Takaki M (1996) Energizing effects of illumination on the reactivities of lysine residues of the subunit of chloroplast ATP synthase. Eur J Biochem 236: 470-475

    Google Scholar 

  • Krab K, Bakels RHA, Scholts MJC and van Walraven HS (1993) Activation of the H+-ATP synthase in thylakoid vesicles from the cyanobacterium Synechococcus 6716 by \(\Delta \tilde \mu _{H^ + } \). Including a comparison with chloroplasts, and introducing a new method to calibrate light-induced \(\Delta \tilde \mu _{H^ + } \). Biochim Biophys Acta 1141: 197-205

    Google Scholar 

  • Kramer DM and Crofts AR (1989) Activation of the chloroplast ATPase measured by the electrochromic change in leaves of intact plants. Biochim Biophys Acta 976: 28-41

    Google Scholar 

  • Kramer DW, Wise RR, Frederick JR, Alm DM, Hesketh JD, Ort DA and Crofts AR (1990) Regulation of coupling factor in fieldgrown sunflower: A redox model relating coupling factor activity to the activities of other thioredoxin-dependent chloroplast enzymes. Photosynth Res 26: 213-222

    Google Scholar 

  • Krenn BE, van Walraven HS, Scholts JC and Kraayenhof R (1993) Modulation of the proton-translocation stoichiometry of H+ATP synthases in two phototrophic prokaryotes by external pH. Biochem J 294: 705-709

    Google Scholar 

  • Lebowitz MS and Pedersen PL (1996) Protein inhibitor of mitochondrial ATP synthase: Relationship of inhibitor structure to pH-dependent regulation. Arch Biochem Biophys 330: 342-354

    Google Scholar 

  • Lightowlers RN, Howitt SM, Hatch L, Gibson F and Cox GB (1987) The proton pore in the E. coli F1F0 ATPase: A requirement for Arg-210 in the a-subunit. Biochim Biophys Acta 894: 399-406

    Google Scholar 

  • Lill H, Hensel F, Junge W and Engelbrecht S (1996) Cross-linking of engineered subunit δ to (α β)3 in chloroplast F-ATPase. J Biol Chem 271: 32737-32742

    Google Scholar 

  • Lippe G, SorgatoMC and Harris DA (1988a) Kinetics of the release of the mitochondrial inhibitor protein. Correlation with synthesis and hydrolysis of ATP. Biochim Biophys Acta 933: 1-11

    Google Scholar 

  • Lippe G, Sorgato MC and Harris DA (1988b) The binding and release of the inhibitor protein are governed independently by ATP and membrane potential in ox-heart submitochondrial vesicles. Biochim Biophys Acta 933: 12-21

    Google Scholar 

  • Lohse D, Thelen R and Strotmann H (1989) Activity equilibria of the thiol-modulated chloroplast H+-ATPase as a function of the proton gradient in the absence and presence of ADP and arsenate. Biochim Biophys Acta 976: 85-93

    Google Scholar 

  • López-Zabalza MJ, Flores F and López-Moratella N (1989) Effect of redox potential on rat liver F1-ATPase. FEBS Lett 242: 293-296

    Google Scholar 

  • Maloney PC (1982) Energy coupling to ATP synthesis by the proton-translocating ATPase. J Membr Biol 67: 1-12

    Google Scholar 

  • Matsuno-Yagi A and Hatefi Y (1993) Studies on the mechanism of oxidative phosphorylation. ATP synthesis by submitochondrial particles inhibited at F0 by venturicidin and organotin compounds. J Biol Chem 268: 6168-6173

    Google Scholar 

  • McCarty RE (1996) An overview of the function, composition and structure of the chloroplast ATP synthase. In: Ort DR and Yocum CF (eds) Oxygenic Photosynthesis: The Light Reactions, pp 439-451. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Miki J, Maeda M, Mukohata Y and Futai M (1988) The γ-subunit of ATP synthase from spinach chloroplasts. Primary structure deduced from the cloned cDNA sequence. FEBS Lett 232: 211-226

    Google Scholar 

  • Milgrom YM, Ehler LL and Boyer PD (1991) The characteristics and effects on catalysis of nucleotide binding to non catalytic sites of chloroplast ATPase. J Biol Chem 266: 11551-11558

    Google Scholar 

  • Miller MJ, Oldenburg M and Fillingame RH (1990) The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and proton-translocating function retained. Proc Natl Acad Sci USA 87: 4900-4904

    Google Scholar 

  • Mills JD and Hind G (1979) Light-induced Mg2+ activity of coupling factor 1 in intact chloroplasts. Biochim Biophys Acta 547: 455-462

    Google Scholar 

  • Mills JD and Mitchell P (1982) Modulation of coupling factor ATPase activity in intact chloroplasts. Reversal of thiol modulation in the dark. Biochim Biophys Acta 679: 75-82

    Google Scholar 

  • Mills JD and Mitchell P (1984) Thiol modulation of the chloroplast proton motive ATPase and its effects on photophosphorylation. Biochim Biophys Acta 764: 93-104

    Google Scholar 

  • Mimura H, Hashimoto T, Yoshida Y, Ichikawa N and Tagawa K (1993) Binding of an intrinsic ATPase inhibitor to the interface between alpha-and beta-subunits of F1Fo ATPase upon de-energization of mitochondria. J Biochem 113: 350-354

    Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191: 144-148

    Google Scholar 

  • Mitchell P (1969) Chemiosmotic coupling and energy transduction. Theor Exptl Biophys 2: 159-216

    Google Scholar 

  • Mitchell P (1974) A chemiosmotic molecular mechanism for proton-translocating adenosine triphosphatases. FEBS Lett 43: 189-194

    Google Scholar 

  • Mitchell P (1975) The protonmotive Q cycle: A general formulation. FEBS Lett 59: 137-139

    Google Scholar 

  • Mitchell P (1984) Bacterial flagellar motors and osmoelectric molecular rotation by an axially transmembrane well and turnstile mechanism. FEBS Lett 176: 287-294

    Google Scholar 

  • Moore AL and Bonner WD, Jr (1981) A comparison of the phosphorylation potential and electrochemical proton gradient in mung bean mitochondria and phosphorylating sub-mitochondrial particles. Biochim Biophys Acta 634: 117-128

    Google Scholar 

  • Moroney JV, Warncke K and McCarty RE (1982) The distance between thiol groups in the subunit of coupling factor 1-influences the proton permeability of thylakoid membranes. J Bioenerg Biomembr 14: 347-359

    Google Scholar 

  • Moroney JV, Fullmer CS and McCarty RE (1984) Characterization of the cysteinyl-containing peptides of the subunit of coupling factor 1. J Biol Chem 259: 7281-7285

    Google Scholar 

  • Nalin CM and McCarty RE (1984) Role of a disulfide bond in the subunit in activation of the ATPase of chloroplast coupling factor. J Biol Chem 259: 7275-7280

    Google Scholar 

  • Noctor G and Mills JD (1988) Thiol modulation of the thylakoid ATPase. Lack of oxidation of the enzyme in the presence of \(\Delta \tilde \mu _{H^ + } \) in vivo and a possible explanation of the physiological requirement for the thiol regulation of the enzyme. Biochim Biophys Acta 935: 53-60

    Google Scholar 

  • Noji H, Yasuda R, Yoshida M and Kinosia K (1997) Direct observation of the rotation of F1-ATPase. Nature 386: 299-302

    Google Scholar 

  • O'Rourke JF and Wilson SB (1992) The membrane-bound forms of the mitochondrial ATPase of turnip (Brassica napus L.) and mung bean (Phaseolus aureus): Characterisation and investigation of factors controlling activity. J Exp Bot 43: 1507-1514

    Google Scholar 

  • Ort DR and Osborough K (1992) In situ regulation of chloroplast coupling factor activity. Annu Rev Plant Physiol Plant Mol Biol 43: 269-291

    Google Scholar 

  • Panchenko MV and Vinogradov AD (1985) Interaction between the mitochondrial ATP synthetase and ATPase inhibitor protein. FEBS Lett 184: 226-230

    Google Scholar 

  • Pänke O and Rumberg B (1996) Kinetic modeling of the proton translocating CF0CF1-ATP synthase from spinach. FEBS Lett 383: 196-200

    Google Scholar 

  • Papa S, Zanotti F, Cocco T, Perrucci C, Candita C and Minuto M (1996) Identification of functional domains and critical residues in the adenosinetriphosphatase inhibitor protein of mitochondrial F0F1 ATP synthase. Eur J Biochem 240: 461-467

    Google Scholar 

  • Pedersen PL (ed) (1996) ATP synthase: Current views about subunit movements during catalysis. J Bioenerg Biomembr 28 (N° 5: special issue): 387-457

  • Pitard B, Richard P, Duñach M and Rigaud J-L (1996) ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin: 2. Relationships between proton motive force and ATP synthesis. Eur J Biochem 253: 779-788

    Google Scholar 

  • Polgreen KE, Featherstone J, Willis AC and Harris DA (1995) Primary structure and properties of the inhibitory protein of the mitochondrial ATPase (H+-ATP synthase) from potato. Biochim Biophys Acta 1229: 175-180

    Google Scholar 

  • Portis AR and McCarty RE (1976) Quantitative relationships between phosphorylation, electron flow, and internal hydrogen ion concentration in spinach chloroplasts. J Biol Chem 251: 1610-1617

    Google Scholar 

  • Possmayer FE and Gräber P (1994) The pHin and pHout dependence of the rate of ATP synthesis catalyzed by the chloroplast HCATPase, CF0F1, in proteoliposomes. J Biol Chem 269: 1896-1904

    Google Scholar 

  • Power J, Cross RL and Harris DA (1983) Interaction of F1-ATPase from ox heart mitochondria with its naturally occurring inhibitor protein. Biochim Biophys Acta 724: 128-141

    Google Scholar 

  • Pullman ME and Monroy GC (1963) A naturally occurring inhibitor of mitochondrial adenosine triphosphatase. J Biol Chem 238: 3762-3768

    Google Scholar 

  • Quick WP and Mills JD (1987) Changes in the apparent Michaelis constant for ADP during photophosphorylation are consistent with delocalised chemiosmotic energy coupling. Biochim Biophys Acta 893: 197-207

    Google Scholar 

  • Quick WP and Mills JD (1988a) Changes in the apparent affinity of CF0-CF1 for its substrates during photophosphorylation. Biochim Biophys Acta 932: 232-239

    Google Scholar 

  • Quick WP and Mills JD (1988b) The kinetics of adenine nucleotide binding to chloroplast ATPase, CF0-CF1, during the illumination and post illumination period in isolated pea thylakoids. Biochim Biophys Acta 936: 222-237

    Google Scholar 

  • Rathenow M and Rumberg B (1980) Stoichiometry of proton translocation during photosynthesis. Ber Bunsenges Phys Chem 84: 1059-1062

    Google Scholar 

  • Reimer S and Selman BR (1978) Tentoxin-induced energyindependent adenine nucleotide exchange and ATPase activity with chloroplast coupling factor 1. J Biol Chem 253: 7249-7255

    Google Scholar 

  • Renganathan M and Dilley RA (1994) Evidence that the intrinsic membrane protein LHCII in thylakoids is necessary for maintaining localized \(\Delta \tilde \mu _{H^ + } \) energy coupling. J Bioenerg Biomembr 26: 117-125

    Google Scholar 

  • Richard P and Gräber P (1992) Kinetics of ATP synthesis catalyzed by the H+-ATPase from chloroplasts (CF0F1) reconstituted into liposomes and coreconstituted with bacteriorhodopsin. Eur J Biochem 210: 287-291

    Google Scholar 

  • Richard P (1991) Membraneproteine als energiekonverter. Thesis, Technische Universität Berlin

  • Richter ML and McCarty RE (1987) Energy-dependent changes in the conformation of the ε subunit of the chloroplast ATP synthase. J Biol Chem 262: 15037-15040

    Google Scholar 

  • Richter ML, Patrie WJ and McCarty RE (1984) Preparation of the ε subunit and ε-subunit deficient chloroplast coupling factor 1 in reconstitutively active forms. J Biol Chem 259: 7371-7373

    Google Scholar 

  • Rigoulet M, Fraisse L, Ouhabi R, Guérin B, Fontaine E and Leverve X (1990) Flux-dependent increase in the stoichiometry of charge translocation by mitochondrial ATPase/ATP synthase induced by almitrine. Biophys Biochim Acta 1018: 91-97

    Google Scholar 

  • Rumberg B and Becher U (1984) Multiple Δ;pH control of H+ ATP synthase function in chloroplasts. In: Papa S, Altendorf L, Ernster L and Packer L (eds) ATPases: Structure, Function, Biogenesis, pp 421-430. Adriatica Editrice, Bari, Italy

    Google Scholar 

  • Rumberg B, Schubert K, Strelow F and Tran-Anh T (1990) The H+/ATP coupling ratio at the H+-ATP-synthase of spinach chloroplast is four. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol III, pp 125-128. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Sabbert D, Engelbrecht S and Junge W (1996) Intersubunit rotation in active F-ATPase. Nature 381: 623-625

    Google Scholar 

  • Sabbert D and Junge W (1997) Stepped versus continuous rotary motors at the molecular scale. Proc Natl Acad Sci USA 94: 2312-1317

    Google Scholar 

  • Schlodder E and Witt HT (1981) Relation between the initial kinetics of ATP synthesis and of conformational changes in the chloroplast ATPase studied by external field pulses. Biochim Biophys Acta 635: 571-584

    Google Scholar 

  • Schmidt G and Gräber P (1987) The rate of ATP synthesis catalyzed by reconstituted CF0F1-liposomes; dependence on ΔpH and ΔΨ. Biochim Biophys Acta 890: 392-394

    Google Scholar 

  • Schwerzmann K and Pedersen PL (1981) Proton-adenosine triphosphatase complex of rat liver mitochondria: effect of energy state in its interaction with the adenosinetriphosphatase inhibitory peptide. Biochemistry 20: 6305-6311

    Google Scholar 

  • Selman-Reimer S and Selman B (1988) The activation and inactivation of the Dunaliella salina chloroplast coupling factor 1 (CF1) in vivo and in situ. FEBS Lett 230: 17-20

    Google Scholar 

  • Selman-Reimer S, Duhe R J, Stockman BJ and Selman BR (1991) L-1-N-methyl-4-mercaptohistidine disulfide, a potential endogenous regulator in the redox control of chloroplast coupling factor 1 in Dunaliella. J Biol Chem 266: 182-188

    Google Scholar 

  • Sigalat C, de Kouchkovsky Y, Haraux F and de Kouchkovsky F (1988) Shift from localized to delocalized energy coupling in thylakoids by permeant amines. Biochim Biophys Acta 934: 375-388

    Google Scholar 

  • Sigalat C, Haraux F and de Kouchkovsky Y (1993) Flow-force relationships in lettuce thylakoids. 1. Strict control of electron flow by internal pH. Biochemistry 32: 10193-10200

    Google Scholar 

  • Singh S, Turina P, Bustamante CJ, Keller DJ and Capaldi R (1996) Topographical structure of membrane-bound Escherichia coli F1F0 ATP synthase in aqueous buffer. FEBS Lett 397: 30-34

    Google Scholar 

  • Slooten L and Vandenbranden S (1989) ATP-synthesis by proteoliposomes incorporating Rhodospirillum rubrum F0F1 as measured with firefly luciferase: dependence on ΔΨ and ΔsspH. Biochim Biophys Acta 976: 150-160

    Google Scholar 

  • Stroop SD and Boyer PD (1985) Characteristics of the chloroplast ATP synthase as revealed by reaction at low ADP concentration. Biochemistry 24: 2304-2310

    Google Scholar 

  • Strotmann H and Bickel-Sandkötter S (1977) Energy-dependent exchange of adenine nucleotides on chloroplast coupling factor CF1. Biochim Biophys Acta 460: 126-135

    Google Scholar 

  • Strotmann H and Lohse D (1988) Determination of the H+/ATP ratio of the H+ transport-coupled reversible chloroplast ATPase reaction by equilibrium studies. FEBS Lett 229: 308-312

    Google Scholar 

  • Strotmann H, Bickel S and Huchzermeyer B (1976) Energydependent release of adenine nucleotide tightly bound to chloroplast coupling factor 1. FEBS Lett 61: 194-198

    Google Scholar 

  • Strotmann H, Bickel-Sandkötter S and Shoshan V (1979) Kinetic analysis of light-dependent exchange of adenine nucleotides on chloroplast coupling factor CF1. FEBS Lett 101: 316-320

    Google Scholar 

  • Strotmann H, Thelen R, Müller W and Baum W (1990) A ΔpH clamp method for analysis of steady-state kinetics of photophosphorylation. Eur J Biochem 193: 879-886

    Google Scholar 

  • Turina P, Melandri BA and Gräber P (1991) ATP synthesis in chromatophores driven by artificially induced ion gradients. Eur J Biochem 196: 225-229

    Google Scholar 

  • Turina P, Rumberg B, Melandri BA and Gräber P (1992) Activation of the H+-ATP synthase in the photosynthetic bacterium Rhodobacter capsulatus. J Biol Chem 267: 11057-11063

    Google Scholar 

  • Uribe E (1973) ATP synthesis driven by a K+-induced charge imbalance across chloroplast grana membranes. FEBS Lett 36: 143-147

    Google Scholar 

  • Valerio M and Haraux F (1993) Catalytic and activating protons follow different pathways in the H+-ATPase of potato tuber mitochondria. FEBS Lett 336: 83-86

    Google Scholar 

  • Valerio M, de Kouchkovsky Y and Haraux F (1992) An attempt to discriminate catalytic and regulatory proton binding sites in membrane-bound, thiol-reduced chloroplast ATPase. Biochemistry 31: 4239-4247

    Google Scholar 

  • Valerio M, Haraux F, Gardeström P and Diolez P (1993 a) Tissue specificity of the regulation of ATP hydrolysis by isolated plant mitochondria. FEBS Lett 318: 113-117

    Google Scholar 

  • Valerio M, Diolez P and Haraux F (1993 b) The electrochemicalproton-gradient-activated states of F0F1 ATPase in plant mitochondria as revealed by detergents. Eur J Biochem 216: 565-571

    Google Scholar 

  • van de Stadt RJ, de Boer BL and van Dam K (1973) The interaction between the mitochondrial ATPase (F1) and the ATPase inhibitor. Biochim Biophys Acta 292: 338-349

    Google Scholar 

  • van Raaij MJ, Orriss GL, Montgomery MG, Runswick M, Fearnley M, Skehel MJ and Walker JE (1996) The ATPase inhibitor protein from bovine heart mitochondria: The minimal inhibitory sequence. Biochemistry 35: 15618-15625

    Google Scholar 

  • van Walraven HS and Bakels RHA (1996) Function, structure and regulation of cyanobacterial and chloroplast ATP synthase. Physiol Planta 96: 526-532

    Google Scholar 

  • van Walraven HS, Hollander EE, Scholts MJC and Kraayenhof R (1997) The H+/ATP ratio of the ATP synthase from the cyanobacterium Synechococcus 6716 varies with growth temperature and light intensity. Biochim Biophys Acta 1318: 217-224

    Google Scholar 

  • van Walraven HS, Strotmann H, Schwarz O and Rumberg B (1996) The H+/ATP coupling ratio of the ATP synthase from thiolmodulated chloroplasts and two cyanobacterial strains is four. FEBS Lett 379: 309-313

    Google Scholar 

  • Vik SB and Antonio BJ (1994) A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem 269: 30364-30369

    Google Scholar 

  • Walker JE (1994) The regulation of catalysis in ATP synthase. Curr Opin Struct Biol 4: 912-918

    Google Scholar 

  • Walker JE, Lutter R, Dupuis A and Runswick MJ (1991) Identification of the subunits of F1F0-ATPase from bovine heart mitochondria. Biochemistry 30: 5369-5378

    Google Scholar 

  • Watts SD, Zhang Y, Fillingame RH and Capaldi RA (1995) The subunit in the Escherichia coli ATP synthase complex (ECF1F0) extends through the stalk and contacts the c subunits of the F0 part. FEBS Lett 368: 235-238

    Google Scholar 

  • Weber J and Senior AE (1997) Catalytic mechanism of F1-ATPase. Biochim Biophys Acta 1319: 19-58

    Google Scholar 

  • Weiss MA and McCarty RE (1977) Cross-linking within a subunit of coupling factor 1 increases the proton permeability of spinach chloroplast thylakoids. J Biol Chem 252: 8007-8012

    Google Scholar 

  • Woelders H, van der Zande WJ, Colen AMAF, Wanders RJA and van Dam K (1985) The phosphate potential maintained by mitochondria in state 4 is proportional to the protonmotive force. FEBS Lett 179: 278-282

    Google Scholar 

  • Zhou JM, Xue Z, Du Z, Melese T and Boyer PD (1988) Relationship of tightly bound ADP and ATP to control and catalysis by chloroplast ATP synthase. Biochemistry 27: 5129-5135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haraux, F., de Kouchkovsky, Y. Energy coupling and ATP synthase. Photosynthesis Research 57, 231–251 (1998). https://doi.org/10.1023/A:1006083802715

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006083802715

Keywords

Navigation