Skip to main content
Log in

The Superalgebra spl(p,q) and Differential Operators

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Series of finite-dimensional representations of the superalgebrasspl(p,q) can be formulated in terms of linear differentialoperators acting on a suitable space of polynomials. We sketch the generalingredients necessary to construct these representations and presentexamples related to spl(2,1) and spl(2,2). By revisiting the products ofprojectivised representations of sl(2), we are able to construct new sets ofdifferential operators preserving some space of polynomials in two or morevariables. In particular, this allows us to express the representation ofspl(2,1) in terms of matrix differential operators in two variables. Thecorresponding operators provide the building blocks for the construction ofquasi-exactly solvable systems of two and four equations in two variables.We also present a quommutator deformation of spl(2,1) which, by constructionprovides an appropriate basis for analyzing the quasi exactly solvablesystems of finite difference equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turbiner, A. V.: Quasi exactly solvable problems and sl(2, R), Comm. Math. Phys. 119 (1988), 467.

    Google Scholar 

  2. Ushveridze, A. G.: Quasi Exact Solvability in Quantum Mechanics, Institute of Physics, Bristol, 1993.

    Google Scholar 

  3. Turbiner, A. V.: Lie algebras and polynomials in one variable, J. Phys. A 25 (1992), L1087.

    Google Scholar 

  4. Gonzalez-Lopez, A., Kamran, N. and Olver, P. J.: Quasi-exactly solvable Lie algebras of differential operators in two complex variables, J. Phys. A 24 (1991), 3995.

    Google Scholar 

  5. Gonzalez-Lopez, A., Kamran, N. and Olver, P. J.: Real lie algebras of differential operators and quasi-exactly solvable potentials, Philos. Trans. Roy. Soc. London Ser. A 354 (1996), 1165.

    Google Scholar 

  6. Shifman, M. A. and Turbiner, A. V.: Quantal problems with partial algebraization of the spectrum, Comm. Math. Phys. 126 (1989), 347.

    Google Scholar 

  7. Brihaye, Y. and Kosinski, P.: Quasi exactly solvable 2 × 2 matrix equations, J. Math. Phys. 35 (1994), 3089.

    Google Scholar 

  8. Brihaye, Y. and Nuyts, J.: The hidden symmetry algebras of a class of quasi exactly solvable multi dimensional equation, Comm. Math. Phys., in press; q-alg/9701016.

  9. Brihaye, Y., Giller, S. and Kosinski, P.: On the relations between osp (2, 2) and the quasi exactly solvable systems, hep-th/9611226.

  10. Hurni, J.-P. and Morel, B.: Irreducible representations of SU(m/n), J. Math. Phys. 24 (1983), 157.

    Google Scholar 

  11. Brink, L., Turbiner, A. and Wyllard, N.: Hidden algebras of the (super) Calogero and Sutherland models, J. Math. Phys. 39 (1998) 1285.

    Google Scholar 

  12. Witten, E.: Gauge theories, vertex models and quantum groups, Nuclear Phys. B 330 (1990), 285.

    Google Scholar 

  13. Woronowicz, S.: Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613.

    Google Scholar 

  14. Zachos, C.: Elementary paradigms of quantum algebras, in: J. Stasheff and M. Gerstenhaber (eds), Proc. Conference on Deformation Theory of Algebras and Quantization with Applications to Physics,Contemp. Math., Amer. Math. Soc., Providence, 1991.

    Google Scholar 

  15. Brihaye, Y., Giller, S. and Kosinski, P.: Linear operators with invariant polynomial space and graded algebra, J. Math. Phys. 38 (1997), 989.

    Google Scholar 

  16. Brihaye, Y.: Quommutator deformations of spl(M,1) superalgebra, J. Math. Phys. 39 (1998), 1.

    Google Scholar 

  17. Turbiner, A. V.: in: N. Kamran and P. Olver (eds), Lie Algebras, Cohomologies and New Findings in Quantum Mechanics, Contemp. Math. 160, Amer. Math. Soc., Providence, 1994, p. 263.

    Google Scholar 

  18. Scheunert, M., Nahm, W. and Rittenberg, V.: Irreducible representations of the osp(2, 1) and spl(2, 1) graded Lie algebras, J. Math. Phys. 18 (1977), 155.

    Google Scholar 

  19. Deguchi, T., Fujii, A. and Ito, K.: Quantum superalgebra U q .osp(2, 2)), Phys. Lett. B 238 (1990), 242.

    Google Scholar 

  20. Floreanini, R., Spiridonov, V. and Vinet, L.: q-Oscillator realization of the quantum superalgebras slq m, n), Comm. Math. Phys. 137 (1991), 149.

    Google Scholar 

  21. Fairlie, D. B. and Zachos, C. K.: Multiparameter associative generalizations of canonical commutation relations and quantized planes, Phys. Lett. B 256 (1991), 43.

    Google Scholar 

  22. Chung, W.: On Witten-type deformation of osp(1/2)algebra, GNU-TG-95-08 preprint, q-alg/9609015.

  23. Wiegmann, P. B. and Zabrodin, A. V.: Algebraization of difference eigenvalue equations related to U q .(sl2 ), Nuclear Phys. B 451 (1995), 699.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brihaye, Y., Giller, S. & Kosinski, P. The Superalgebra spl(p,q) and Differential Operators. Acta Applicandae Mathematicae 54, 167–184 (1998). https://doi.org/10.1023/A:1006083505435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006083505435

Navigation