Skip to main content
Log in

Mitigation Strategy to Contain Methane Emission from Rice-Fields

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Methane is primarily a biogenic gas, which is implicated in global climate change. Among all the sources of methane emission, paddy fields form the most dominant source. An experiment was conducted with a common paddy crop (Oryza sativa var. Vishnuparag) by amending the soils with different organic manures and biofertilizers with a view to find out an inexpensive strategy to mitigate methane emission from the rice-fields. The results revealed that there was a seasonal change in the CH4 flux, registering a peak at heading stage in all treatments. The application of rice straw before flooding and the biofertilizer after flooding enhances CH4 efflux from the rice-fields significantly, while composts of cowdung and leaves did not stimulate CH4 production and, rather, decreased CH4 fluxes. As soil pH and temperature were optimum for methanogenesis, it was likely that the organic C and the redox potential mainly modulated methane production and its emission through rice plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachelet, D. and Neue, H.-U: 1993, ‘Methane emission from wetland rice areas of Asia', Chemosphere 26(1–4), 219.

    Google Scholar 

  • Connell, W. E. and Patrick, W. H. Jr.: 1969, ‘Reduction of sulphate to sulphide in waterlogged soil', Soil Sci. Soc. Am. Proc. 33, 711.

    Google Scholar 

  • Crawford, W.: 1984, ‘Methane production in Minnesota peat lands', Appl. Environ. Microbiol. 47, 1266.

    Google Scholar 

  • Dommergues, Y. R. and Rinaudo, G.: 1979, ‘Factors affecting N2-fraction in the rice rhizosphere, in nitrogen and rice', ed. by the International Rice Research Institute, Los Banos. Philippines, pp. 241–260.

    Google Scholar 

  • Itou, J. and Imura, K.: 1989, ‘Decomposition of rice straw and evolution of gas from paddy field of clayey gley soil in Horkuriku district of Japan', Jap. J. Soil. Sci. Pl. Nutri. 60, 290.

    Google Scholar 

  • Khalil, M. A. K. and Rasmussen, R. A.: 1990, ‘Atmospheric methane: recent global trends', Environmental Science and Technology 24, 549.

    Google Scholar 

  • Khalil, M. A. K., Rasmussen, R. A., Wang, M.-X and Ren, L.: 1991, ‘Methane emission from rice fields in China', Environ. Sci. Technol. 25, 979.

    Google Scholar 

  • Mariko, S., Harazono, Y., Owa, N. and Noucji, I.: 1991, ‘Methane in flooded soil, water and the emission through rice plants to the atmosphere', Environ. Exp. Bot. 31, 343.

    Google Scholar 

  • Martin, J. K.: 1977, ‘Factors influencing the loss of organic carbon from wheat roots', Soil Biochem. 9, 1.

    Google Scholar 

  • Matsuo, T.: 1969, ‘Morphology and Functions of Rice Plants. 6th edn., Assoc. Agric. Technol., Tokyo, Japan.

    Google Scholar 

  • Minami, K. and Neue, H.-U: 1994, ‘Rice paddies as a methane source', Clim. Change 27, 13.

    Google Scholar 

  • Neue, H.-U. and Sass, R.: 1994, ‘Trace gas emission from rice fields', in: Prinn R. (ed.), Global atmospheric-biospheric chemistry. Plenum Press, New York, pp. 119–148.

    Google Scholar 

  • Neue, H,-U., Ziska, L. H., Matthews, R. B. and Dai, Q.: 1995, ‘Reducing Global Warming', Geojournal 35(3), 351.

    Google Scholar 

  • Oremland, R. S., March, L.M. and Polcin, S.: 1982, ‘Methane production and simultaneous sulphate reduction in anoxic salt march sediments', Nature 296, 143.

    Google Scholar 

  • Oremland, R. S.: 1988, ‘Biogeochemistry of methanogenic bacteria', in: Zehnder A. J. B. (ed.), Biology of anaerobic microorganisms. John Wiley, New York, 641.

    Google Scholar 

  • Parashar, D. C., Rai, J., Gupta, P. K. and Singh, N.: 1991, ‘Parameters affecting methane emission from paddy fields', Indian J. Radio and Space Physics 20, 12.

    Google Scholar 

  • Parashar, D. C. et al.: 1996, ‘Methane budget from paddy fields in India', Chemosphere 33(4), 737.

    Google Scholar 

  • Piper, C. S.: 1966, Soil and plant analysis, Wiley Interscience, New York.

    Google Scholar 

  • Rasmussen, R. A. and Khalil, M. A. K.: 1981, ‘Atmospheric methane: Trends and seasonal cycles', J. Geophys. Res. 86, 9826.

    Google Scholar 

  • Reddy, K. R. and Patrick, W. H. Jr.: 1984, ‘Nitrogen transformations and loss in flooded soils and sediments'. CRC Crit. Rev. Environ. Control. 13, 273.

    Google Scholar 

  • Sass, R. L., Fisher, F. M., Harcombe, P. A. and Turner, F. T.: 1991, ‘Mitigation of methane emissions from rice fields: Possible adverse effects of incorporated rice straw', Global Biogeochem. Cycles. 5, 275.

    Google Scholar 

  • Sass, R. L., Fisher, F. M., Turner, F. T. and Jund, M. F.: 1991, ‘Methane emission from fields as influenced by solar radiation temperature and straw incorporation', Global Biogeochem. Cycles 5, 335.

    Google Scholar 

  • Scheel, H. E., Brunke, E. G. and Seiler, W.: 1989, ‘Long-term measurements of tropospheric trace gases at the monitoring station cape point, South Africa'. WMO special Environmental report. No. 724, 127.

  • Seiler, W., Holzapfel-Pschorn, A., Conrad, R. and Scharffe, D.: 1984, ‘Emission of methane from rice paddies', J. Atmos. Chem. 1, 241.

    Google Scholar 

  • Tsutsuki, K. and Ponnamperuma, F. N.: 1987, ‘Behavior of anaerobic decomposition products in submerged soils. Effects of organic material amendment, soil properties, and temperature', Soil Sci. Plant Nutr. 33(1), 13.

    Google Scholar 

  • Waid, G. S.: 1974, ‘Decomposition of roots', in: C. H. Dickinson and G. J. F. Pugh (eds.), ‘Biology of plant litter decomposition', Vol 1, London, pp. 175–211.

  • Wang, Z., Delaine, R. D., Masscheleyn, P. H. and Patrick, W. H. Jr.: 1993, ‘Soil redox and pH effects on methane production in a flooded rice soil', Soil Sci. Soc. Am. J. 57, 382.

    Google Scholar 

  • Yagi, K. and Minami, K.: 1990, ‘Effect of organic matter application on methane emission from some Japanese rice fields', Soil Sci. Plant Nutr. 36, 599.

    Google Scholar 

  • Yagi, K. and Minami, K.: 1991, ‘Emission and production of methane in the paddy fields of Japan', JARQ 25, 165.

    Google Scholar 

  • Zehnder, A. J.: 1978, ‘Ecology of methane formation', in: R. Mitchell (ed.), ‘Water Pollution Microbiology', 2, pp. 349–376. Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnihotri, S., Kulshreshtha, K. & Singh, S.N. Mitigation Strategy to Contain Methane Emission from Rice-Fields. Environ Monit Assess 58, 95–104 (1999). https://doi.org/10.1023/A:1006081317688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006081317688

Navigation