Skip to main content
Log in

Host plant associations in the spider mite Tetranychus urticae (Acari: Tetranychidae): insights from molecular phylogeography

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

This article integrates studies on the genetic variation of T. urticae populations and the interspecific variation of several tetranychid species. It aims at obtaining insights into the roles of the historical, geographical and ecological factors in the partitioning of variation of species. Two types of molecular markers were used to determine whether the patterns of genetic variation in mites inhabiting different host plants can shed light on the existence of host plant associations. The ribosomal sequences of the second internal transcribed spacer (ITS2), which evolves through concerted evolution, are good indicators of long-term isolation between populations and reveal exceptional homogeneity in a worldwide sampling of T. urticae. The mitochondrial cytochrome oxidase I (COI) sequences do not disclose old divergences related to host plant in this mite but rather suggest recent geographic colonization patterns of the species. Allozyme variation on a fine scale gives some evidence of host associations in the case of citrus trees. However, if any divergence of mites related to this host plant exists, it probably prevails in local populations only and it should not be old enough to be revealed by a phylogenetic analysis of mitochondrial COI sequences. The phyletic constraint in the evolution of feeding specificity in the family Tetra-nychidae is investigated based on a phylogenetic analysis of mitochondrial sequences. The results provide some support for the hypothesis that an evolutionary trend towards polyphagy has occurred in the family. Overall, it seems that the major characteristic of T. urticae is its high colonization potential. Polyphagy has enhanced its successful spread and may have led to connectivity between populations worldwide. © Rapid Science Ltd. 1998

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Avise, J.C. 1994. Molecular Markers, Natural History and Evolution. Chapman & Hall, New York.

    Google Scholar 

  • Bolland, H.R., Gutierrez, J. and Flechtmann, C.H.W. 1998. World catalogue of the spider mites family Acari: Tetranychidae with references to taxonomy, synonymy, host pests and distribution. Academic Publ. Brill. Leiden 392pp.

  • Boudreaux, H.B. 1963. Biological aspects of some phytophagous mites. Annu. Rev. Entomol. 8: 137-154.

    Article  Google Scholar 

  • Brown, W.M., George, M.J. and Wilson, A.C. 1990. Rapid evolution of animal mitochondrial DNA. Proc. Natl Acad. Sci. USA 76: 1967-1971.

    Google Scholar 

  • Bush, G.L. 1969. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis(Diptera, Tephritidae). Evolution 23: 237-251.

    Google Scholar 

  • Bush, G.L. 1975. Modes of animal speciation. Annu. Rev. Ecol. Syst. 6: 339-364.

    Article  Google Scholar 

  • De Boer, R. 1985. Reproductive barriers. In Spider mites: their biology, natural enemies and control, Vol. IA, W. Helle and M.W. Sabeilis (eds), pp. 193-200. Elsevier Science, Amsterdam.

    Google Scholar 

  • Diehl, S.R. and Bush, G.L. 1984. An evolutionary and applied perspective of insect biotypes. Annu. Rev. Entomol. 29: 471-504.

    Article  Google Scholar 

  • Dover, G. 1982. Molecular drive: a cohesive mode of species evolution. Nature 299: 111-117.

    PubMed  Google Scholar 

  • Dupont, L. 1979. On gene flow between Tetranychus urticaeKoch, 1836 and Tetranychus cinnabarinus(Boisduval) Boudreaux, 1956 (Acari: Tetranychidae): synonomy between the two species. Exp. Appl. Acarol. 25: 297-303.

    Google Scholar 

  • Feder, J.L., Chilcote, C.A. and Bush, G.L. 1990. The geographic pattern of genetic differentiation between host associated populations of Rhagoletis pomonella(Diptera: Tephritidae) in the Eastern United States and Canada. Evolution 44: 570-594.

    Google Scholar 

  • Fry, J.D. 1989. Evolutionary adaptation to host plants in a laboratory population of the phytophagous mite Tetranychus urticaeKoch. Oecologia 81: 559-565.

    Google Scholar 

  • Gotoh, T., Bruin, J., Sabelis, M.W. and Menken, S.B.J. 1993. Host race formation in Tetranychus urticae: genetic differentiation, host plant preference, and mate choice in a tomato and a cucumber strain. Entomol. Exp. Appl. 68: 171-178.

    Google Scholar 

  • Gould, F. 1979. Rapid host range evolution in a population of the phytophagous mite Tetranychus urticaeKoch. Evolution 33: 791-802.

    Google Scholar 

  • Gutierrez, J. and Helle, W. 1985. Evolutionary changes in the Tetranychidae. In Spider mites: their biology, natural enemies and control, Vol. IA, W. Helle and M.W. Sabelis (eds), pp. 91-107. Elsevier Science, Amsterdam.

    Google Scholar 

  • Helle, W. and Pieterse, A.H. 1965. Genetic affinities between adjacent populations of spider mites. Entomol. Exp. Appl. 8: 305-308.

    Google Scholar 

  • Hillis, D.M. and Dixon, M.T. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Q. Rev. Biol. 66: 411-453.

    Article  PubMed  Google Scholar 

  • Hillis, D.M., Mable, B.K., Larson, A., Davis, S.K. and Zimmer, E.A. 1996. Nucleic acids IV: sequencing and cloning. In Molecular systematics, D.M. Hillis, C. Moritz and B.K. Mable (eds), pp. 321-381. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules. In Mammalian protein metabolism, H.N. Munro (ed.), pp. 21-132. Academic Press, New York.

    Google Scholar 

  • Lyon, W.F. 1973. A plant feeding mite Mononychellus tanajoa(Bondar) new to the African continent threatens cassava (Manihot esculentaCrantz) in Uganda. PANS 19: 36-37.

    Google Scholar 

  • Malhotra, A., Thorpe, R.A., Black, H., Daltry, J.C. and Wüster, W. 1996. Relating geographic patterns to phylogenetic processes. In New uses for new phylogenies, P.H. Harvey, A.J. Leigh Brown, J. Maynard Smith and S. Nee (eds), pp. 185-202. Oxford University Press. Oxford.

    Google Scholar 

  • Menken, S.B.J. 1981. Host race formation and sympatric speciation in small ermine moths, Yponomeutidae. Entomol. Exp. Appl. 30: 280-292.

    Google Scholar 

  • Menken, S.B.J., Herrebout, W.M. and Wiebes, J.T. 1992. Small ermine moths (Yponomeuta): Their host relations and evolution. Annu. Rev. Entomol. 37: 41-66.

    Article  Google Scholar 

  • Mindell, D.P. and Honeycutt, R.L. 1990. Ribosomal RNA in vertebrates: evolution and phylogenetic applications. Annu. Rev. Ecol. Syst. 21: 541-566.

    Article  Google Scholar 

  • Mopper, S. 1996. Adaptive genetic structure in phytophagous insect populations. TREE 11: 235-238.

    Google Scholar 

  • Murphy, R.W., Sites, J.W., Jr, Buth, D.G. and Haufler, C.H. 1996. Proteins: isozyme electrophoresis. In Molecular systematics, D.M. Hillis, C. Moritz and B.K. Mable (eds), pp. 51-120. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Navajas, M., Gutierrez, J., Bonato, O., Bolland, H.R. and Mapangou-Divassa, S. 1994. Intraspecific diversity of the cassava green mite Mononychellus progresivus(Acari: Tetranychidae) using comparisons of mitochondrial and nuclear ribosomal DNA sequences and cross-breeding. Exp. Appl. Acarol. 18: 351-360.

    PubMed  Google Scholar 

  • Navajas, M., Fournier, D., Lagnel, J. and Boursot, P. 1996a. Mitochondrial COI sequences in mites: evidence for variation in base composition. Insect Mol. Biol. 5: 1-5.

    PubMed  Google Scholar 

  • Navajas, M., Gutierrez, M., Lagnel, J. and Boursot, P. 1996b. Mitochondrial cytochrome oxidase I in tetranychid mites: a comparison between molecular phylogeny and changes of morphological and life history traits. Bull. Entomol. Res. 86: 407-417.

    Google Scholar 

  • Navajas, M., Gutierrez, J. and Gotoh, T. 1997. Convergence of molecular and morphological data reveals phylogenetic information on Tetranychusspecies and allows the restoration of the genus Amphitetranychus(Acari: Tetranychidae). Bull. Entomol. Res. 87: 283-288.

    Google Scholar 

  • Navajas, M., Lagnel, J., Gutierrez, J. and Boursot, P. 1998. Species wide homogeneity of nuclear ribosomal ITS2 sequences in the spider mite. Tetranychus urticaecontrasts with extensive mitochondrial polymorphism. Heredity. In press.

  • Osakabe, M. and Komazakil, S. 1996. Differences in esterase isozymes between Panonychus citripopulations infesting citrus and Osmanthus. Exp. Appl. Acarol. 20: 113-119.

    Google Scholar 

  • Parr, W.J. and Hussey, N.W. 1960. Further studies on the reproductive isolation of geographical strains in the Tetranychus urticaecomplex. Entomol. Exp. Appl. 3: 137-141.

    Google Scholar 

  • Powell, J.R., Caccone, A., Amato, G.D. and Yoon, C. 1986. Rates of nucleotide substitution in Drosophilamitochondrial DNA and nuclear DNA are similar. Proc. Natl Acad. Sci. USA 83: 9090-9093.

    PubMed  Google Scholar 

  • Roderick, G.K. 1996. Geographic structure of insect populations: gene flow, phylogeography and their uses. Annu. Rev. Entomol. 41: 325-352.

    Article  PubMed  Google Scholar 

  • Sabelis, M.W. 1985. Reproductive strategies. In Spider mites: their biology, natural enemies and control, W. Helle and M.W. Sabelis (eds), pp. 265-278. Vol. IA, Elsevier Science, Amsterdam.

    Google Scholar 

  • Saitô, Y. 1978. Comparative studies on life histories of three species of spider mites (Acarina: Tetranychidae). Appl. Entomol. Zool. 14: 83-94.

    Google Scholar 

  • Solignac, M., Monnerot, M. and Mounolou, J.C. 1986. Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. J. Mol. Evol. 23: 31-40.

    PubMed  Google Scholar 

  • Swofford, D.L., Olsen, G.J., Waddell, P.J. and Hillis, D.M. 1996. Phylogeny inference. In Molecular systematics, D.M. Hillis, C. Moritz and B.K. Mable (eds), 407-514. Sinauer Associates, Inc., Sunderland, MA.

    Google Scholar 

  • Tauber, C.A. and Tauber, M.J. 1989. Sympatric speciation in insects: perception and perspective. In Speciation and its consequences, D. Otte and J.A. Endler (eds), pp. 307-344. Sinauer, Sunderland.

    Google Scholar 

  • Tsagkarakou, A., Navajas, M., Lagnel, J. and Pasteur, N. 1997. Population structure in the spider mite Tetranychus urticae(Acari: Tetranychidae) from Crete based on multiple allozymes. Heredity 78: 84-92.

    Article  Google Scholar 

  • Tsagkarakou, A., Navajas, M., Papaionnou-Souliotis, P. and Pasteur, N. 1998. Gene flow among Tetranychus urticae(Acari: Tetranychidae) population in Greece. Mol. Ecol. 7: 71-79.

    Article  Google Scholar 

  • Tsagkarakou, A., Navajas, M., Rousset, F. and Pasteur, N. 1998. Genetic differentiation in Tetranychus urticae(Acari: Tetranychidae) from greenhouses in France. Exp. Appl. Acarol. in press.

  • Van de Bund, C.F. and Helle, W. 1960. Investigations on the Tetranychus urticaecomplex in North West Europe. Entomol. Exp. Appl. 3: 142-156.

    Google Scholar 

  • Veerman, A. 1970. The pigments of Tetranychus cinnabarinus(Acari: Tetranychidae). Comp. Biochem. Physiol. 36: 749-763.

    Article  Google Scholar 

  • Veerman, A. 1974. Carotenoid metabolism in Tetranychus urticaeKoch (Acari: Tetranychidae). Comp. Biochem. Physiol. 47: 101-116.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navajas, M. Host plant associations in the spider mite Tetranychus urticae (Acari: Tetranychidae): insights from molecular phylogeography. Exp Appl Acarol 22, 201–214 (1998). https://doi.org/10.1023/A:1006062214318

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006062214318

Navigation