Skip to main content
Log in

The erbB2 gene as a cancer therapeutic target and the tumor- and metastasis-suppressing function of E1A

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Shwkowski MX, Schaefer G, Akita RW, Lofgren JA, Fitzpatrick VD, Nuijens A, Fendly BM, Cerione RA, Vandlen RL, Carraway KL: Coexpression of erbB2 and erbB3 proteins reconstitutes a high affinity receptor for heregulin. J Biol Chem 269: 14661-14665, 1994

    PubMed  Google Scholar 

  2. Wallasch C, Weiss FU, Niederfellner G, Jallal B, Issing W, Ullrich A: Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J 14: 4267-4275, 1995

    PubMed  Google Scholar 

  3. Graus-Porta D, Beerli RR, Daly JM, Hynes NE: ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16: 1647-1655, 1997

    Article  PubMed  Google Scholar 

  4. Carraway KL, Sliwkowski MX, Akita R, Platko JV, Guy PM, Nuijens A, Diamonti J, Vandelen RL, Cantley LC, Cerione RA: The erbB-3 gene product is a receptor for heregulin. J Biol Chem 269: 14303-14306, 1994

    PubMed  Google Scholar 

  5. Plowman GD, Grenn JM, Culouscou J-M, Carlton GW, Rothwell VM, Buckley S: Heregulin induces tyrosine phosphorylation of HER4/p180erbB-4. Nature 366: 473-475, 1993

    Article  PubMed  Google Scholar 

  6. Yu D, Wolf JK, Scanlon M, Price JE, Hung M-C: Enhanced c-erbB-2/neu expression in human ovarian cancer cells correlates with more severe malignancy that can be suppressed by E1A. Cancer Res 53: 891-898, 1993

    PubMed  Google Scholar 

  7. Tsai C-M, Yu D, Chang K-T, Wu L-H, Perng PR-P, Ibrahim NK, Hung M-C: Enhanced chemoresistance by elevation of p185neu levels in HER-2/neu transfected human lung cancer cells. J Natl Cancer Inst 87: 682-684, 1995

    PubMed  Google Scholar 

  8. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177-182, 1987

    PubMed  Google Scholar 

  9. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, McGuire WL: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science (Washington, D.C.) 244: 707-712, 1989

    PubMed  Google Scholar 

  10. van de Vijver M, van de Bersselaar R, Devilee P, Cornelisse C, Peterse J, Nusse R: Amplification of the neu (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol Cell Biol 7: 2019-2023, 1987

    PubMed  Google Scholar 

  11. van de Vijver MJ, Peterse JL, Mooi WJ, Wisman P, Lomans J, Dalesio O, Nusse R: Neu-protein overexpression in breast cancer: Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med 319: 1239-1245, 1988

    Google Scholar 

  12. Zhang X, Silva E, Gershenson D, Hung M-C: Amplification and rearrangement of c-erbB proto-oncogenes in cancer of human female genital tract. Oncogene 4: 985-989, 1989

    PubMed  Google Scholar 

  13. Berchuck A, Kamel A, Whitaker R, Kerns B, Olt G, Kinney R, Soper JT, Dodge R, Clarke-Pearson DL, Marks P, McKenzie P, Yin S, Bast JRC: Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 50: 4087-4091, 1990

    PubMed  Google Scholar 

  14. Schneider PM, Hung MC, Chiocca SM, Manning J, Zhao XY, Fang K, Roth JA: Differential expression of the c erbB-2 gene in human small cell and non-small cell lung cancer. Cancer Res 49: 4968-4971, 1989

    PubMed  Google Scholar 

  15. Weiner DB, Nordberg J, Robinson R, Nowell PC, Gazdar A, Greene MI, Williams WV, Cohen JA, Kern JA: Expression of the neu gene-encoded protein (P185neu) in human non-small cell carcinomas of the lung. Cancer Res 50: 421-425, 1990

    PubMed  Google Scholar 

  16. Shi D, He G, Cao S, Pan W, Zhang H-Z, Yu D, Hung M-C: Overexpression of the c-erbB-2/neu-encoded p185 protein in primary lung cancer. Mol Carcinog 5: 213-218, 1992

    PubMed  Google Scholar 

  17. Yokota J, Yamamoto T, Miyajima N, Toyoshima K, Nomura N, Sakamoto H, Yoshida T, Terada M, Sugimura T: Genetic alterations of the c-erbB-2 oncogene occur frequently in tubular adenocarcinoma of the stomach and are often accompanied by amplification of the v-erbA homologue. Oncogene 2: 283-287, 1988

    PubMed  Google Scholar 

  18. Park J-B, Rhim JS, Park S-C, Kimm S-W, Kraus MH: Amplification, overexpression, and rearrangement of the erbB-2 protooncogene in primary human stomach carcinomas. Cancer Res 49: 6605-6609, 1989

    PubMed  Google Scholar 

  19. D'Emilia J, Bulovas K, D'Ercole K, Wolf B, Steele G Jr, Summerhayes JC: Expression of the c-erbB-2 gene product (p185) at different stages of neoplastic progression in the colon. Oncogene 4: 1233-1239, 1989

    PubMed  Google Scholar 

  20. Xia W, Lau YK, Zhang HZ, Liu AR, Li L, Kiyokawa N, Clayman GL, Katz RL, Hung MC: Strong correlation between c-erbB-2 overexpression and overall survival of patients with oral squamous cell carcinoma. Clinical Cancer Res 3: 3-9, 1997

    Google Scholar 

  21. Yu D, Hung MC: Expression of activated rat neu oncogene is sufficient to induce experimental metastasis in 3T3 cells. Oncogene 6: 1991-1996, 1991

    PubMed  Google Scholar 

  22. Yusa K, Sugimoto Y, Yamori T, Yamamoto T, Toyoshima K, Tsuruo T: Low metastatic potential of clone from murine colon adenocarcinoma 26 increased by transfection of activated c-erbB-2 gene. J Natl Cancer Inst 82: 1633-1636, 1990

    PubMed  Google Scholar 

  23. Suda Y, Aizawa S, Furuta Y, Yagi T, Ikawa Y, Saitoh K, Yamada Y, Toyoshima K, Yamamoto T: Induction of a variety of tumors by c-erbB2 and clonal nature of lymphomas even with the mutated gene (Val659-Glu659). EMBO J 9: 181-190, 1990

    PubMed  Google Scholar 

  24. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P: Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54: 105-115, 1988

    PubMed  Google Scholar 

  25. Bouchard L, Lamarre L, Tremblay PJ, Jolicoeur P: Stochas tic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57: 931-936, 1989

    PubMed  Google Scholar 

  26. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ: Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 89: 10578-10582, 1992

    PubMed  Google Scholar 

  27. Yu D, Wang S-S, Dulski KM, Tsai C-M, Nicolson GL, Hung M-C: c-erbB-2/neu overexpression enhanced metastatic potential in human lung cancer cells. Cancer Res 54: 3260-3266, 1994

    PubMed  Google Scholar 

  28. Tan M, Yao J, Yu D: Overexpression of the c-erbB-2 gene enhanced intrinsic metastatic potential in human breast cancer cells without increasing their tranformation abilities. Cancer Res 57: 1199-1205, 1997

    PubMed  Google Scholar 

  29. Gusterson BA, Gelber RD, Goldhirsch A, Price KN, Save-Soderborgh J, Anbazhagan R, Styles J, Rudenstam C-M, Golouh R, Reed R, Martinez-Tello T, Tiltman A, Torhorst J, Grigolato P, Bettelheim R, Neville AM, Burki K, Castiglione M, Collins J, Lindtner J, Senn H J, Ludwig IBCSG: Prognostic importance of c-erbB-2 expression in breast cancer. J Clin Oncol 10: 1049-1056, 1992

    PubMed  Google Scholar 

  30. Hancock MC, Langton BC, Chan T, Toy P, Monahan JJ, Mischak RP, Shawver LK: A monoclonal antibody against the c-erbB-2 protein enhances the cytotoxicity of cis-diamminedichloroplatinum against human breast and ovarian tumor cell lines. Cancer Res 51: 4575-4580, 1991

    PubMed  Google Scholar 

  31. Pietras RJ, Fendly BM, Chazin VR, Pegram MD, Howell SB, Slamon DJ: Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast cancer and ovarian cancer cells. Oncogene 9: 1829-1838, 1994

    PubMed  Google Scholar 

  32. Arteaga CL, Winnier AR, Poirier MC, Lopez-Larraza DM, Shawver LK, Hurd SD, Stewart SJ: p185c-erbB-2 signaling enhances cisplatin-induced cytotoxicity in human breast carcinoma cells: Association between an oncogenic receptor tyrosine kinase and drug-induced DNA repair. Cancer Res 54: 3758-3765, 1994

    PubMed  Google Scholar 

  33. Muss HB, Thor AD, Berry DA, Kute T, Liu ET, Koerner F, Cirrincione CT, Budman DR, Wood WC, Barcos M, Henderson IC: C-erbB-2 expression and response to adjuvant therapy in woman with node-positive early breast cancer. N Engl J Med 330: 1260-1266, 1994

    Article  PubMed  Google Scholar 

  34. Porter-Jordan K, Lippman ME: Overview of the biologic markers of breast cancer. Breast Cancer 8: 73-100, 1994

    Google Scholar 

  35. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, Shepard HM, Osborne CK: Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF 7 cells transfected with HER2/neu. Breast Cancer Res Treat 24: 85-95, 1993

    PubMed  Google Scholar 

  36. Yu D, Liu B, Tan M, Li J, Wang S-S, Hung M-C: Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to Taxol via mdr-1-independent mechanisms. Oncogene 13: 1359-1365, 1996

    PubMed  Google Scholar 

  37. Yu D, Liu B, Sun D, Jing T, Price JE, Singletary SE, Hortobagyi GN, Hung MC: Overexpression of both p185c-erbB2 and p170mdr-1 renders breast cancer cells highly resistant to Taxol. Oncogene 16: 2087-2094, 1998

    Article  PubMed  Google Scholar 

  38. Pegram MD, Finn RS, Arzoo K, Beryt M, Pietras RJ, Slamon DJ: The effect of HER2/neu overexpression on chemotherapeutic drug sensitivity in human breast and ovarian cancer cells. Oncogene 15: 537-547, 1997

    PubMed  Google Scholar 

  39. Yu D, Hung M-C: HER-2/neu gene in human cancers. In: Freireich E, Stass SA (eds) Molecular Basis of Oncology, Blackwell Scientific Publications Inc., Cambridge, Vol, 131-162, 1995

    Google Scholar 

  40. Berk AJ: Adenovirus promoters and E1A transactivation. Ann Rev Genet 20: 45-79, 1986

    PubMed  Google Scholar 

  41. Tooze J: DNA tumor viruses. In: (ed) Molecular Biology of Tumor Viruses. 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, Vol, 1981

    Google Scholar 

  42. Berger SL, Folk WR: Differential activation of RNA polymerase III-transcribed genes by the polyomavirus enhancer and the adenovirus E1A gene products. Nucl Acids Res 13: 1413-1428, 1985

    PubMed  Google Scholar 

  43. Gaynor RB, Feldman LT, Berk AJ: Viral immediate early proteins activate transcription of class III genes. Science 230: 447-450, 1985

    PubMed  Google Scholar 

  44. Hoeffler WK, Roeder RG: Enhancement of RNA polymerase III transcription by the E1A products of adenovirus. Cell 41: 955-963, 1985

    PubMed  Google Scholar 

  45. Berk AJ, Lee F, Harrison T, Williams J, Sharp PA: A precarly adenovirus 5 gene product regulates synthesis of early viral messenger RNAs. Cell 17: 1979

  46. Ferguson B, Jones C, Richter J, Rosenberg M: Adenovirus E1A gene product expressed at high levels in Escherichia coli is functional. Science 224: 1343-1346, 1984

    PubMed  Google Scholar 

  47. Jones N, Shenk T: An adenovirus type 5 early gene function regulates expression of other early viral genes. Proc Natl Acad Sci USA 76: 1979

  48. Nevins JR: Mechanism of activation of early viral transcription by the adenovirus E1A gene product. Cell 26: 213-220. 1981

    PubMed  Google Scholar 

  49. Stein R, Ziff E: Hela cell β-tubulin gene transcription is stimulated by adenovirus 5 in parallel with viral early genes in an E1A-dependent mechanism. Mol Cell Biol 4: 2792-2801, 1984

    PubMed  Google Scholar 

  50. Kao H-T, Nevins JR: Transcriptional activation and subsequent control of the human heat shock gene during adenovirus infection. Mol Cell Biol 3: 2058-2065, 1983

    PubMed  Google Scholar 

  51. De Groot R, Foulkes N, Mulder M, Kruijer W, Sassone-Corsi P: Positive regulation of jun/AP-1 by E1A. Mol Cell Biol 11: 192-201, 1991

    PubMed  Google Scholar 

  52. Sassone-Coisi P, Bonelli E. Promoter tiansactivation of protooncogenes c-fos and c-myc, but not c-Ila-ras, by products of adenovirus early region 1A. Proc Natl Acad Sci USA 84: 6430-6433, 1987

    PubMed  Google Scholar 

  53. Borrelli E, Hen R, Chambon P: Adenovirus-2 E1A products repress enhancer-induced stimulation of transcription. Nature 312: 608-612, 1984

    PubMed  Google Scholar 

  54. Hen R, Borrelli E, Chambon P: Repression of the immunoglobulin heavy chain enhancer by the adenovirus-2 E1A products. Science 230: 1391-1394, 1985

    PubMed  Google Scholar 

  55. Velcich A, Ziff EB: Adenovirus E1A proteins repress transcription from the SV40 early promoter. Cell 40: 705-716, 1985

    PubMed  Google Scholar 

  56. Velcich A, Kern FG, Basilico C, Ziff EB: Adenovirus E1A proteins repress expression from polyomavirus early and late promoters. Mol Cell Biol 6: 4019-4025, 1986

    PubMed  Google Scholar 

  57. Stein R, Ziff EB: Repression of insulin gene expression by adenovirus type 5 E1A proteins. Mol Cell Biol 7: 1164-1170, 1987

    PubMed  Google Scholar 

  58. Sogawa K, Handa H, Fujisawa-Sehara A, Hiromasa T, Yamane M, Fujii-Kuriyama Y: Repression of cytochrome P450c gene expression by cotransfection with adenovirus E1A DNA. Eur J Biochem 181: 539-544, 1989

    PubMed  Google Scholar 

  59. Webster KA, Muscat GEO, Kedes L: Adenovirus E1A products suppress myogenic differentiation and inhibit transcription from muscle-specific promoters. Nature 332: 553-557, 1988

    PubMed  Google Scholar 

  60. Timmers HTM, Van Dam H, Pronk GL, Van der Eb AJ: Adenovirus E1A represses transcription of the cellular JE gene. J Virol 63: 1470-1473, 1989

    PubMed  Google Scholar 

  61. Van Dam H, Offringa R, Smits AMM, Bos JL, Jones NC, Van der Eb AJ: The repression of the growth factor-inducible genes JE, c-myc and stromelysin by adenovirus E1A is mediated by conserved region 1. Oncogene 4: 1207-1212, 1989

    PubMed  Google Scholar 

  62. Friedman DJ, Ricciardi RP: Adenovirus type 12 E1A gene represses accumulation of MHC class I mRNAs at the level of transcription. Virology 165: 303-305, 1988

    PubMed  Google Scholar 

  63. Berk AJ: Function of adenovirus E1A. Berk AJ (ed) Oxford University Press, Oxford, 1986

    Google Scholar 

  64. Branton PE, Bayley ST, Graham FL: Transformation by human adenoviruses. Biochem Biophys Acta 780: 67-94, 1985

    PubMed  Google Scholar 

  65. Schrier PI, Bernards R, Vaessen RTMJ, Houweling A, Van der Eb AJ: Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature 305: 771-775, 1983

    PubMed  Google Scholar 

  66. Ruley HE: Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602-606, 1983

    PubMed  Google Scholar 

  67. Byrd PJ, Grand RJA, Gallimore PH: Differential transformation of primary human embryo retinal cells by adenovirus E1A regions and combination of E1A(+) ras. Oncogene 2: 477-484, 1988

    PubMed  Google Scholar 

  68. Land H, Parada LF, Weinberg RA: Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596-602, 1983

    PubMed  Google Scholar 

  69. Montell C, Courtois G, Eng C, Berk AJ: Complete transformation by adenovirus 2 requires both E1A proteins. Cell 36: 951-961, 1984

    PubMed  Google Scholar 

  70. Moran E, Zerler B, Harrison TM, Mathews MB: Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes. Mol Cell Biol 6: 3470-3480, 1986

    PubMed  Google Scholar 

  71. Shenk T, Flint J: Transcriptional and transforming activities of the adenovirus E1A proteins. Adv Cancer Res 57: 47-85, 1991

    PubMed  Google Scholar 

  72. Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E: Association between an oncogene and an anti-oncogene: The adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334: 124-129, 1988

    PubMed  Google Scholar 

  73. Yu D, Suen T-C, Yan D-H, Chang LS, Hung M-C: Transcriptional repression of the neu protooncogene by the adenovirus 5 E1A gene products. Proc Natl Acad Sci USA 87: 4499-4503, 1990

    PubMed  Google Scholar 

  74. Yan D-H, Chang L-S, Hung M-C: Repressed expression of the HER-2/c-erbB-2 proto-oncogene by the adenovirus E1A gene products. Oncogene 6: 343-345, 1991

    PubMed  Google Scholar 

  75. Yu D, Scorsone K, Hung M-C: Adenovirus type 5 E1A gene products act as transformation suppressors of the neu oncogene. Mol Cell Biol 11: 1745-1750, 1991

    PubMed  Google Scholar 

  76. Yu D, Hamada J-I, Zhang H, Nicolson GL, Hung M-C: Mechanisms of neu oncogene induced metastasis and abrogation of metastatic properties by the adenovirus 5 E1A gene products. Oncogene 7: 2263-2270, 1992

    PubMed  Google Scholar 

  77. Yu D, Shi D, Scanlon M, Hung M-C: Reexpression of neu-encoded oncoprotein counteracts the tumor-suppressing but not the metastasis-suppressing function of E1A. Cancer Res 53: 5784-5790, 1993

    PubMed  Google Scholar 

  78. Yu D, Matin A, Xia W, Sorgi F, Huang L, Hung M-C: Liposome-mediated in vivo E1A gene transfer suppressed dissemmation of ovarian cancer cells that overexpress HER-2/neu. Oncogene 11: 1383-1388, 1995

    PubMed  Google Scholar 

  79. Mulligan RC: The basic science of gene therapy. Science 260: 926-931, 1993

    PubMed  Google Scholar 

  80. Zhang Y, Yu D, Xia W, Hung M-C: HER-2/neu-targeting cancer therapy via adenovirus-mediated E1A delivery in an animal model. Oncogene 10: 1947-1954, 1995

    PubMed  Google Scholar 

  81. Zhang Y, Xia W, Shao R, Sorgi F, Hortobagyi GN, Huang L, Hung M-C: The tumor suppression activity of E1A in HER-2/neu-overexpressing breast cancer. Oncogene 14: 561-568, 1997

    PubMed  Google Scholar 

  82. Chang JY, Xia W, Shao R, Hung MC: Inhibition of intratracheal lung cancer development by systemic delivery of E1A. Oncogene 13: 1405-1412, 1996

    PubMed  Google Scholar 

  83. Chen H, Yu D, Chinnadurai G, Karunagaran D, Hung M: Mapping of adenovirus 5 E1A domains responsible for suppression of neu-mediated transformation via transcriptional repression of neu. Oncogene 14: 1965-1971, 1997

    PubMed  Google Scholar 

  84. Pozzatti R, McCormick M, Thompson MA, Khoury G: The E1A gene of adenovirus type 2 reduces the metastatic potential of ras-transformed rat cmbryo cells. Mol Cell Biol 8: 2984-2988, 1988

    PubMed  Google Scholar 

  85. Frisch SM: Antioncogenic effect of adenovirus E1A in human tumor cells. Proc Natl Acad Sci USA 88: 9077-9081, 1991

    PubMed  Google Scholar 

  86. Frisch SM, Dolter KE: Adenovirus E1A-mediated tumor suppression by a c-erbB-2/neu-independent mechanism. Cancer Res 55: 5551-5555, 1995

    PubMed  Google Scholar 

  87. van Groningen JJ, Cornelissen IM, van Muijen GN, Bloemers HP: Simultaneous suppression of progression marker genes in the highly malignant human melanoma cell line BLM after transfection with the adenovirus-5 E1A gene. Biochem Biophys Res Commun 225: 808-816, 1996

    PubMed  Google Scholar 

  88. Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S, White E: The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc Natl Acad Sci USA 89: 7742-7746, 1992

    PubMed  Google Scholar 

  89. Lowe SW, Ruley HE: Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev 7: 535-545, 1993

    PubMed  Google Scholar 

  90. Debbas M, White E: Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 7: 546-554, 1993

    PubMed  Google Scholar 

  91. Teodoro JG, Shore GC, Branton PE: Adenovirus E1A proteins induce apoptosis by both p53-dependent and p53-independent mechanisms. Oncogene 11: 467-474, 1995

    PubMed  Google Scholar 

  92. Chen M-J, Holskin B, Strickler J, Gorniak J, Clark MA, Johnson PJ, Mitcho M, Shalloway D: Induction by E1A oncogene expression of cellular suseeptibility to lysis by TNF. Nature 330: 581-584, 1987

    PubMed  Google Scholar 

  93. Cook JL, May DL, Wilson BA, Holskin B, Chen M-J, Shalloway D, Walker TA: Role of tumor necrosis factor-a in E1A oncogene-induced susceptibility of neoplastic cells to lysis by natural killer cells and activated macrophages. J Immunol 142: 4527-4534, 1989

    PubMed  Google Scholar 

  94. Frisch SM, Reich R, Collier IE, Genrich LT, Martin G, Goldberg GI: Adenovirus E1A represses protease gene expression and inhibits metastasis of human tumor cells. Oncogene 5: 75-83, 1990

    PubMed  Google Scholar 

  95. Young KS, Weigel R, Hiebert S, Nevins JR: Adenovirus E1A-mediated negative control of genes activated during F9 differentiation. Mol Cell Biol 9: 3109-3113, 1989

    PubMed  Google Scholar 

  96. Steeg PS, Bevilacqua G, Kopper L, Thorgeirsson UP, Talmadge JE, Liotta LA, Sobel ME: Evidence for a novel gene associated with low tumor metastatic potential. J Natl Can Inst 80: 200-204, 1988

    Google Scholar 

  97. Steeg PS, Bevilacqua G, Pozzutti R, Liotta LA, Sobel ME: Altered expression of NM23, a gene associated with low tumor metastatic potential, during adenovirus 2 E1A inhibition of experimental metastasis. Cancer Res 48: 6550-6554, 1988

    Google Scholar 

  98. Rosengard AM, Krutzsch HC, Shearn A, Biggs JR, Barker E, Margulies IMK, King CR, Liotta LA, Steeg PS: Reduced Nm23-Awd protein in tumor metastasis and aberrant Drosophila development. Nature 342: 177-180, 1989

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, D., Hung, MC. The erbB2 gene as a cancer therapeutic target and the tumor- and metastasis-suppressing function of E1A. Cancer Metastasis Rev 17, 195–202 (1998). https://doi.org/10.1023/A:1006054421970

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006054421970

Navigation