Abstract
For Bäcklund transformations, treated as relations in the categoryof diffieties, local conditions of effectivity and normality are introduced,having implications for the solution generating properties. We check themfor the pKdV, the sine-Gordon, and the Tzitzéica equation.
This is a preview of subscription content, access via your institution.
References
Ablowitz, M. J. and Segur, H.: Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.
Anderson, R. L. and Fokas, A. S.: Group theoretical nature of B Bäcklund transformations, Lett. Math. Phys. 3(1979), 117–126.
Bianchi, L.: Lezioni di Geometria Differenziale, Vol. I, Part II, Zanichelli, Bologna, 1927.
Bernstein, I. N. and Rosenfel’d, B. I.: Homogeneous spaces of infinite dimensional Lie algebras and characteristic classes of foliations, Uspekhi Mat. Nauk 28(4) (1973), 103–138 (in Russian).
Brezhnev, Yu. V.: Darboux transformation and some multi-phase solutions of the Dodd–Bullough–Tzitzéica equation: U xt = eU - e-2U, Phys. Lett. A 211(1996), 94–100.
Dodd, R. K. and Bullough, R. K.: Bäcklund transformations for the sine-Gordon equations, Proc. Roy. Soc. London A 351(1976), 499–523.
Dodd, R. K. and Bullough, R. K.: Polynomial conserved densities for the sine-Gordon equations, Proc. Roy. Soc. London A 352(1977), 481–503.
van Eck, H. N.: The explicit form of the Lie algebra of Wahlquist and Estabrook. A presentation problem, Nederl. Akad. Wetensch. Proc. Ser. A 86(1983), 149–164, 165–172.
Finley III, J. D.: The Robinson–Trautman type III prolongation structure contains K 2, Comm. Math. Phys. 178(1996), 375–390.
Finley III, J. D. and McIver, J. K.: Prolongation to higher jets of Estabrook–Wahlquist coverings for PDE’s, Acta Appl. Math. 32(1993), 197–225.
Finley III, J. D. and McIver, J. K.: Infinite-dimensional Estabrook–Wahlquist prolongations for the sine-Gordon equation, J. Math. Phys. 36(1995), 5707–5734.
Fordy, A. P.: Prolongation structures of nonlinear evolution equations, in: A. P. Fordy (ed.), Soliton Theory: A Survey of Results, Manchester Univ. Press, 1990.
Hazewinkel, M., Capel, H. W. and de Jager, E. M. (eds.): KdV’95, Acta Appl. Math. 39(1-3) (1995).
Hermann, R.: Geometric Theory of Non-Linear Differential Equations, Bäcklund Transformations, and Solitons, Part B, Interdiscip. Math. 14, Math. Sci. Press, Brookline, 1977.
Hirota, R. and Satsuma, J.: A simple structure of superposition formula of the Bäcklund transformation, J. Phys. Soc. Japan 45(1978), 1741–1750.
Hoenselaers, C.: The sine-Gordon prolongation algebra, Progr. Theor. Phys. 74(1985), 645–654.
Kaptsov, O._V. and Shan’ko, Yu. V.: Trilinear representation and the Moutard transformation for the Tzitzéica equation, Preprint solv-int/9704014.
Krasil’shchik, I._S.: Notes on coverings and Bäcklund transformations, Preprint ESI 260, Vienna, 1995 (http://www.esi.ac.at).
Krasil’shchik, I. S. and Vinogradov, A. M.: Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations, Acta Appl. Math. 15 (1989), 161–209.
Krasil’shchik, I. S., Lychagin, V. V. and Vinogradov, A. M.: Geometry of Jet Spaces and Nonlinear Differential Equations, Gordon and Breach, New York, 1986.
Lamb, G. L., Jr.: Bäcklund transformations at the turn of the century, in: R. M. Miura (ed.), Bäcklund Transformations, Proc. Conf. Nashville,Tennessee, 1974, Lecture Notes in Math. 515, Springer, Berlin, 1975, pp. 69–79.
Lamb, G. L., Jr.: Bäcklund transformations for certain nonlinear evolution equations, J. Math. Phys. 15(1974), 2157–2165.
Markov, Yu. A.: On a class of exact solutions of the kinetic model of equilibrium plasma, Teor. Mat. Fiz. 91(1992), 129–141.
Marvan, M.: On the \(C\)-spectral sequence with ‘general’ coefficients, in: Differential Geometry and Its Applications, Proc. Conf. Brno, 1989, World Scientific, Singapore, 1990, pp. 361–371.
Marvan, M.: Another look on recursion operators, in: Differential Geometry and its Applications, Proc. Conf. Brno, 1995, Masaryk University, Brno, 1996, pp. 393–402 (http:// www.emis.de/proceedings/).
Mikhailov, A. V.: The reduction problem and the inverse scattering method, Physica D 3(1981), 73–117.
Miura, R. M.: Introduction, in: R. M. Miura (ed.), Bäcklund Transformations, Proc. Conf. Nashville, Tennessee 1974, Lecture Notes in Math. 515, Springer, Berlin, 1975.
Omote, M.: Prolongation structures of nonlinear equations and infinite-dimensional algebras, J. Math. Phys. 27(1986), 2853–2860.
Pirani, F. A. E., Robinson, D. C. and Shadwick, W. F.: Local Jet Bundle Formulation of Bäcklund Transformations, D. Reidel, Dordrecht, 1979.
Pommaret, J.-F.: Problème de Bäcklund géneralisé, C.R. Acad. Sci. Paris 289(1979), 119–122.
Rogers, C. and Shadwick, W. F.: Bäcklund Transformations and Their Applications, Academic Press, New York, 1982.
Saunders, D. J.: The Geometry of Jet Bundles, London Math. Soc. Lecture Notes Ser. 142, Cambridge Univ. Press, Cambridge, 1989.
Schief, W. K.: The Tzitzéica equation: Self-dual Einstein spaces via a permutability theorem for the Tzitzéica equation, Phys. Lett. A 223(1996), 55–62.
Sokolov, V. V.: Pseudosymmetries and differential substitutions, Funktsional. Anal. i Prilozhen. 22(1988), 47–56 (in Russian).
Terng, C. L. and Uhlenbeck, K.: Poisson actions and scattering theory for integrable systems, Preprint dg-ga/9707004.
Tzitzéica, G.: Sur une nouvelle classe de surface, C.R. Acad. Sci. Paris 150(1910), 955–956, 1227–1229.
Vinogradov, A. M.: Category of partial differential equations, in: Lecture Notes in Math.1108, Springer, Berlin, 1984, pp. 77–102.
Wahlquist, H. D. and Estabrook, F. B.: Bäcklund transformation for solutions of the Korteweg–de Vries equation, Phys. Rev. Lett. 31(1973), 1386–1390.
Wahlquist, H. D. and Estabrook, F. B.: Prolongation structures and nonlinear evolution equations I, II, J. Math. Phys. 16(1975), 1–7; 17(1976), 1293–1297.
Zakharov, V. E. and Shabat, A. B.: Integration of nonlinear equations of mathematical physics by the inverse scattering method. II, Funktsional. Anal. i. Prilozhen. 13(3) (1979), 13–22 (in Russian).
Zharinov, V. V.: On Bäcklund correspondences, Matem. Sbornik 136(178) (1988), 274–291 (in Russian). English translation Math. USSR Sbornik 64(1989), 277–293.
Zhiber, A. V. and Shabat, A. B.: Klein–Gordon equations with nontrivial group, Dokl. AN SSSR 247(1979), 1103–1107 (in Russian).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Marvan, M. Some Local Properties of Bäcklund Transformations. Acta Applicandae Mathematicae 54, 1–25 (1998). https://doi.org/10.1023/A:1006037726082
Issue Date:
DOI: https://doi.org/10.1023/A:1006037726082