Skip to main content

Some Local Properties of Bäcklund Transformations

Abstract

For Bäcklund transformations, treated as relations in the categoryof diffieties, local conditions of effectivity and normality are introduced,having implications for the solution generating properties. We check themfor the pKdV, the sine-Gordon, and the Tzitzéica equation.

This is a preview of subscription content, access via your institution.

References

  1. Ablowitz, M. J. and Segur, H.: Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.

    Google Scholar 

  2. Anderson, R. L. and Fokas, A. S.: Group theoretical nature of B Bäcklund transformations, Lett. Math. Phys. 3(1979), 117–126.

    Google Scholar 

  3. Bianchi, L.: Lezioni di Geometria Differenziale, Vol. I, Part II, Zanichelli, Bologna, 1927.

    Google Scholar 

  4. Bernstein, I. N. and Rosenfel’d, B. I.: Homogeneous spaces of infinite dimensional Lie algebras and characteristic classes of foliations, Uspekhi Mat. Nauk 28(4) (1973), 103–138 (in Russian).

    Google Scholar 

  5. Brezhnev, Yu. V.: Darboux transformation and some multi-phase solutions of the Dodd–Bullough–Tzitzéica equation: U xt = eU - e-2U, Phys. Lett. A 211(1996), 94–100.

    Google Scholar 

  6. Dodd, R. K. and Bullough, R. K.: Bäcklund transformations for the sine-Gordon equations, Proc. Roy. Soc. London A 351(1976), 499–523.

    Google Scholar 

  7. Dodd, R. K. and Bullough, R. K.: Polynomial conserved densities for the sine-Gordon equations, Proc. Roy. Soc. London A 352(1977), 481–503.

    Google Scholar 

  8. van Eck, H. N.: The explicit form of the Lie algebra of Wahlquist and Estabrook. A presentation problem, Nederl. Akad. Wetensch. Proc. Ser. A 86(1983), 149–164, 165–172.

    Google Scholar 

  9. Finley III, J. D.: The Robinson–Trautman type III prolongation structure contains K 2, Comm. Math. Phys. 178(1996), 375–390.

    Google Scholar 

  10. Finley III, J. D. and McIver, J. K.: Prolongation to higher jets of Estabrook–Wahlquist coverings for PDE’s, Acta Appl. Math. 32(1993), 197–225.

    Google Scholar 

  11. Finley III, J. D. and McIver, J. K.: Infinite-dimensional Estabrook–Wahlquist prolongations for the sine-Gordon equation, J. Math. Phys. 36(1995), 5707–5734.

    Google Scholar 

  12. Fordy, A. P.: Prolongation structures of nonlinear evolution equations, in: A. P. Fordy (ed.), Soliton Theory: A Survey of Results, Manchester Univ. Press, 1990.

  13. Hazewinkel, M., Capel, H. W. and de Jager, E. M. (eds.): KdV’95, Acta Appl. Math. 39(1-3) (1995).

  14. Hermann, R.: Geometric Theory of Non-Linear Differential Equations, Bäcklund Transformations, and Solitons, Part B, Interdiscip. Math. 14, Math. Sci. Press, Brookline, 1977.

    Google Scholar 

  15. Hirota, R. and Satsuma, J.: A simple structure of superposition formula of the Bäcklund transformation, J. Phys. Soc. Japan 45(1978), 1741–1750.

    Google Scholar 

  16. Hoenselaers, C.: The sine-Gordon prolongation algebra, Progr. Theor. Phys. 74(1985), 645–654.

    Google Scholar 

  17. Kaptsov, O._V. and Shan’ko, Yu. V.: Trilinear representation and the Moutard transformation for the Tzitzéica equation, Preprint solv-int/9704014.

  18. Krasil’shchik, I._S.: Notes on coverings and Bäcklund transformations, Preprint ESI 260, Vienna, 1995 (http://www.esi.ac.at).

  19. Krasil’shchik, I. S. and Vinogradov, A. M.: Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations, Acta Appl. Math. 15 (1989), 161–209.

    Google Scholar 

  20. Krasil’shchik, I. S., Lychagin, V. V. and Vinogradov, A. M.: Geometry of Jet Spaces and Nonlinear Differential Equations, Gordon and Breach, New York, 1986.

  21. Lamb, G. L., Jr.: Bäcklund transformations at the turn of the century, in: R. M. Miura (ed.), Bäcklund Transformations, Proc. Conf. Nashville,Tennessee, 1974, Lecture Notes in Math. 515, Springer, Berlin, 1975, pp. 69–79.

    Google Scholar 

  22. Lamb, G. L., Jr.: Bäcklund transformations for certain nonlinear evolution equations, J. Math. Phys. 15(1974), 2157–2165.

    Google Scholar 

  23. Markov, Yu. A.: On a class of exact solutions of the kinetic model of equilibrium plasma, Teor. Mat. Fiz. 91(1992), 129–141.

    Google Scholar 

  24. Marvan, M.: On the \(C\)-spectral sequence with ‘general’ coefficients, in: Differential Geometry and Its Applications, Proc. Conf. Brno, 1989, World Scientific, Singapore, 1990, pp. 361–371.

    Google Scholar 

  25. Marvan, M.: Another look on recursion operators, in: Differential Geometry and its Applications, Proc. Conf. Brno, 1995, Masaryk University, Brno, 1996, pp. 393–402 (http:// www.emis.de/proceedings/).

    Google Scholar 

  26. Mikhailov, A. V.: The reduction problem and the inverse scattering method, Physica D 3(1981), 73–117.

    Google Scholar 

  27. Miura, R. M.: Introduction, in: R. M. Miura (ed.), Bäcklund Transformations, Proc. Conf. Nashville, Tennessee 1974, Lecture Notes in Math. 515, Springer, Berlin, 1975.

    Google Scholar 

  28. Omote, M.: Prolongation structures of nonlinear equations and infinite-dimensional algebras, J. Math. Phys. 27(1986), 2853–2860.

    Google Scholar 

  29. Pirani, F. A. E., Robinson, D. C. and Shadwick, W. F.: Local Jet Bundle Formulation of Bäcklund Transformations, D. Reidel, Dordrecht, 1979.

    Google Scholar 

  30. Pommaret, J.-F.: Problème de Bäcklund géneralisé, C.R. Acad. Sci. Paris 289(1979), 119–122.

    Google Scholar 

  31. Rogers, C. and Shadwick, W. F.: Bäcklund Transformations and Their Applications, Academic Press, New York, 1982.

    Google Scholar 

  32. Saunders, D. J.: The Geometry of Jet Bundles, London Math. Soc. Lecture Notes Ser. 142, Cambridge Univ. Press, Cambridge, 1989.

    Google Scholar 

  33. Schief, W. K.: The Tzitzéica equation: Self-dual Einstein spaces via a permutability theorem for the Tzitzéica equation, Phys. Lett. A 223(1996), 55–62.

    Google Scholar 

  34. Sokolov, V. V.: Pseudosymmetries and differential substitutions, Funktsional. Anal. i Prilozhen. 22(1988), 47–56 (in Russian).

    Google Scholar 

  35. Terng, C. L. and Uhlenbeck, K.: Poisson actions and scattering theory for integrable systems, Preprint dg-ga/9707004.

  36. Tzitzéica, G.: Sur une nouvelle classe de surface, C.R. Acad. Sci. Paris 150(1910), 955–956, 1227–1229.

    Google Scholar 

  37. Vinogradov, A. M.: Category of partial differential equations, in: Lecture Notes in Math.1108, Springer, Berlin, 1984, pp. 77–102.

    Google Scholar 

  38. Wahlquist, H. D. and Estabrook, F. B.: Bäcklund transformation for solutions of the Korteweg–de Vries equation, Phys. Rev. Lett. 31(1973), 1386–1390.

    Google Scholar 

  39. Wahlquist, H. D. and Estabrook, F. B.: Prolongation structures and nonlinear evolution equations I, II, J. Math. Phys. 16(1975), 1–7; 17(1976), 1293–1297.

    Google Scholar 

  40. Zakharov, V. E. and Shabat, A. B.: Integration of nonlinear equations of mathematical physics by the inverse scattering method. II, Funktsional. Anal. i. Prilozhen. 13(3) (1979), 13–22 (in Russian).

    Google Scholar 

  41. Zharinov, V. V.: On Bäcklund correspondences, Matem. Sbornik 136(178) (1988), 274–291 (in Russian). English translation Math. USSR Sbornik 64(1989), 277–293.

    Google Scholar 

  42. Zhiber, A. V. and Shabat, A. B.: Klein–Gordon equations with nontrivial group, Dokl. AN SSSR 247(1979), 1103–1107 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marvan, M. Some Local Properties of Bäcklund Transformations. Acta Applicandae Mathematicae 54, 1–25 (1998). https://doi.org/10.1023/A:1006037726082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006037726082