Skip to main content
Log in

REVIEW Evolution and systematics of the Chelicerata

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

After approximately 40 years of discussion about the question of whether the Arthropoda are a monophyletic or a paraphyletic group or even a polyphyletic assemblage of unrelated taxa, most morphologists, palaeontologists and molecular taxonomists agree that the Arthropoda are a monophylum. The Euarthropoda are composed of the Arachnomorpha and Mandibulata. Myriapods are usually considered to be mandibulates; however, new molecular data as well as some morphological characters show similarities which the Myriapoda share with the Chelicerata, suggesting that there is no taxon Antennata or Atelocerata. Chelicerata are usually considered to be the sister group of Trilobita or, more correctly, Trilobita branch off from the chelicerate stem line. The first adaptive radiation of the Chelicerata took place in the Cambrian. All extant and some extinct orders were present during the Carboniferous. Two systems are compared. It is suggested that the Chelicerata contain the Pantopoda and Euchelicerata. The Euchelicerata are divided into Xiphosura and terrestrial Arachnida. Scorpiones are considered to be the sister group of all other arachnids, the Lipoctena and these are further divided into the Megoperculata (Uropygi, Amblypygi, and Araneae) and Apulmonata (all other groups). The Acari are tentatively considered to be a monophylum and the sister group of the Ricinulei. However, the Actinotrichida and Anactinotrichida diverged early and therefore have had a long history of independent evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alberti, G. 1979. Zur Feinstruktur der Spermien und Spermiocytogenese von Prokoenenia wheeleri(Rucker, 1901) (Palpigradi, Arachnida). Zoomorphologie 94: 111–120.

    Google Scholar 

  • Alberti, G. 1980a. Zur Feinstruktur des Hodenepithels und der Spermien von Eusimonia mirabilisRoewer, 1934 (Solifugae, Arachnida). Zool. Anz. 204: 345–352.

    Google Scholar 

  • Alberti, G. 1980b. Zur Feinstruktur der Spermien und Spermiocytogenese der der Milben (Acari): I. Anactinotrichida. Zool. Jb. Anat. 104: 77–138.

    Google Scholar 

  • Alberti, G. 1980c. Zur Feinstruktur der Spermien und Spermiocytogenese der Milben (Acari): II. Actinotrichida. Zool. Jb. Anat. 104: 144–203.

    Google Scholar 

  • Alberti, G. 1983. Fine structure of scorpion spermatozoa (Buthus occitanus: Buthidae, Scorpiones). J. Morphol. 177: 205–212.

    Google Scholar 

  • Alberti, G. 1984. The contribution of comparative spermatology to problems of acarine systematics. In Acarology VI. I. Sixth International Congress of Acarology, D.A. Griffiths and C.E. Bowman (eds), pp. 479–490. Ellis Horwood, Chichester.

    Google Scholar 

  • Alberti, G. 1991. Spermatology in the Acari: systematic and functional implications. In The Acari - reproduction, development and life-history strategies, R. Schuster and P.W. Murphy. (eds), pp. 77–105. Chapman & Hall, London.

    Google Scholar 

  • Alberti, G. 1995. Comparative spermatology of Chelicerata: review and perspective. In Advances in spermatozoal phylogeny and taxonomy, B.G.M. Jamieson, J. Ausio and J.-L. Justine (eds), vol. 166 pp. 203–230. Mém. Mus. Hist. Nat., Paris.

    Google Scholar 

  • Anderson, D.T. 1972. The development of hemimetabolous insects. pp. In Developmental systems - insects, J. Counce and C.H. Waddington (eds), pp. 95–163. Academic Press, London.

    Google Scholar 

  • Anderson, D.T. 1973. Embryology and Phylogeny in Annelids and Arthropods. Pergamon Press, Oxford.

    Google Scholar 

  • Anderson, D.T. 1979. Embryos, fate maps, and the phylogeny of arthropods. In Arthropod phylogeny, A.P. Gupta (ed.), pp. 59–105. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Ankel, W.E. 1958. Begegnung mit Limulus. Natur Volk 88: 101–110.

    Google Scholar 

  • Averof, M. and Akam, M. 1995. Insect-Crustacean relationships: insights from comparative developmental and molecular studies. Phil. Trans. R. Soc. Lond. B347: 293–303.

    Google Scholar 

  • Ax, P. 1984. Das Phylogenetische System. Gustav Fischer, Stuttgart.

    Google Scholar 

  • Bergström, J. 1979. Morphology of fossil arthropods as a guide to phylogenetic relationships. In Arthropod phylogeny, A.P. Gupta (ed.), pp. 3–56. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Bergström, J. 1980. Morphology and systematics of early arthropods. Abh. Naturwiss. Ver. Hamburg (NF) 23: 1–42.

    Google Scholar 

  • Boore, J.F., Collins, T.M., Stanton, D., Daehler, L.L. and Brown, W.M. 1995. Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376: 163–165.

    Google Scholar 

  • Boudreaux, H.B. 1979a. Significance of intersegmental tendon system in arthropod phylogeny and monophyletic classification of Arthropoda. In Arthropod phylogeny, A.P. Gupta (ed.), pp. 551–586. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Boudreaux, H.B. 1979b. Arthropod Phylogeny. With Special Reference to Insects. John Wiley & Sons, New York.

    Google Scholar 

  • Briggs, D.E.G. 1987. Scorpions take to the water. Nature 326: 645–646.

    Google Scholar 

  • Briggs, D.E.G. and Fortey, R.A. 1989. The early radiation and relationships of the major arthropod groups. Science 246: 241–243.

    Google Scholar 

  • Briggs, D.E.G., Fortey, R.A. and Wills, M.A. 1992. Morphological disparity in the Cambrian. Science 256: 1670–1673.

    Google Scholar 

  • Dohle, W. 1980. Sind die Myriapoden eine monophyletische Gruppe? Abh. Naturwiss. Ver. Hamburg (NF) 23: 45–104.

    Google Scholar 

  • Dohle, W. 1996. Myriapod-Insect relationships as opposed to a crustacean-insect sister group relationship (abstract). In International Symposium on the Relationships of Major Arthropod Groups. pp. 8–9. The Natural History Museum, London.

    Google Scholar 

  • Emerson, J. and Schram, F.R. 1990. The origin of biramous appendages and the evolution of Arthropoda. Science 250: 667–669.

    Google Scholar 

  • Evans, G.O. 1992. Principles of Acarology. CAB International, Wallingford, UK.

    Google Scholar 

  • Firstman, B. 1973. The relationship of the chelicerate arterial system to the evolution of the endosternite. J. Arachnol. 1: 1–54.

    Google Scholar 

  • Fortey, R.A. and Whittington, H.B. 1989. The Trilobita as a natural group. Historical Biol. 2: 125–138.

    Google Scholar 

  • Friedrich, M. and Tautz, D. 1995. Ribosomal DNA phylogeny of the major extant arthropod classes and the evolution of myriapods. Nature 376: 165–167.

    Google Scholar 

  • Fryer, G. 1996. Reflections on arthropod evolution. Biol. J. Linn. Soc. 58: 1–55.

    Google Scholar 

  • Gould, S.J. 1989. Wonderful Life. The Burgess Shale and the Nature of History. Norton, New York.

    Google Scholar 

  • Grashoff, M. 1978. A model of the evolution of the main chelicerate groups. Symp. Zool. Soc. Lond. 42: 273–284.

    Google Scholar 

  • Hahn, G. 1989. Reconstruction of the phylogenetic relationships among the higher systematic taxa of trilobites. Abh. Naturwiss. Ver. Hamburg (NF) 28: 187–199.

    Google Scholar 

  • Hennig, W. 1950. Grundzüge einer Theorie der Phylogenetische Systematik. Deutscher Zentralverlag, Berlin.

    Google Scholar 

  • Hennig, W. 1966. Phylogenetic Systematics. University of Illinois Press, Urbana, Chicago.

    Google Scholar 

  • Kjellesvig-Waering, E.N. 1986. A restudy of the fossil Scorpionida of the world. Paleont. Am. 55: 1–287.

    Google Scholar 

  • Kraus, O. 1996. Phylogenetic relationships between higher taxa of tracheate arthropods (abstract). In International Symposium on the Relationships of Major Arthropod Groups. pp.11–12. The Natural History Museum, London.

    Google Scholar 

  • Kraus, O. and Kraus, M. 1994. Phylogenetic system of the Tracheata (Mandibulata): on ‘Myriapoda’-Insecta interrelationships, phylogenetic age and primary ecological niches. Verh. Naturwiss. Ver. Hamburg (NF) 34: 5–31.

    Google Scholar 

  • Kukalova-Peck, J. 1992. The Uniramia do not exist: the groundplan in the Pterygota as revealed by Permian Diaphanopterodea from Russia (Insecta, Palaeodictyopteroidea). Can. J. Zool. 70: 236–255.

    Google Scholar 

  • Lauterbach, K.-E. 1973. Schlüsselereignisse in der Evolution der Stammgruppe der Euarthropoda. Zool. Beitr. Berlin (NF) 19: 251–299.

    Google Scholar 

  • Lauterbach, K.-E. 1980a. Schlüsselereignisse in der Evolution des Grundplans der Mandibulata (Arthropoda). Abh. Naturwiss. Ver. Hamburg (NF) 23: 105–161.

    Google Scholar 

  • Lauterbach, K.-E. 1980b. Schlüsselereigniss in der Evolution des Grundplans der Arachnata (Arthropoda). Abh. Naturwiss. Ver. Hamburg (NF) 23: 163–327.

    Google Scholar 

  • Lauterbach, K.-E. 1983. Synapomorphien zwischen Trilobiten-und Cheliceratenzweig der Arachnata. Zool. Anz. Jena 210: 213–238.

    Google Scholar 

  • Lauterbach, K.-E. 1989. Trilobites and phylogenetic systematics: a reply to G. Hahn. Abh. Naturwiss. Ver. Hamburg (NF) 28: 201–211.

    Google Scholar 

  • Lindquist, E. E. 1984. Current theories on the evolution of major groups of Acari and on their relationships with other groups of Arachnida, with consequent implications for their classification. In Acarology VI, I, D.A. Griffiths and C.E. Bowman (eds), pp. 28–62. Ellis Horwood, Chichester.

    Google Scholar 

  • Manton, S.M. 1973. Arthropod phylogeny - a modern synthesis. J. Zool. Lond. 171: 111–130.

    Google Scholar 

  • Manton, S.M. 1977. The Arthropoda: Habits, Functional Morphology, and Evolution. Clarendon Press, Oxford.

    Google Scholar 

  • Manton, S.M. 1979. Functional morphology and the evolution of the hexapod classes. In Arthropod phylogeny, A.P. Gupta (ed.), pp. 387–465. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Manton, S.M. and Anderson, D.T. 1979. Polyphyly and the evolution of Arthropods. In The origin of major invertebrate groups, M.R. House (ed.), pp. 269–321. Academic Press, London, New York.

    Google Scholar 

  • Paulus, H.F. 1979. Eye structure and the monophyly of the Arthropoda. In Arthropod phylogeny, A.P. Gupta (ed.), pp. 299–383. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Petrunkevitch, A. 1955. Arachnida. In Treatise on invertebrate paleontology, part P, Arthropoda 2, R.C. Moore (ed.), pp. 42–162. University of Kansas Press, Lawrence.

    Google Scholar 

  • Ramsköld, L. and Edgecombe, G.D. 1991. Trilobite monophyly revisited. Historical Biol 4: 267–283.

    Google Scholar 

  • Scholl, G. 1977. Beiträge zur Embryonalentwicklung von Limulus polyphemusL. (Chelicerata, Xiphosura). Zoomorphologie 86: 99–154.

    Google Scholar 

  • Schram, F.R. 1978. Arthropods: a convergent phenomenon. Fieldiana Geol. 39: 61–108.

    Google Scholar 

  • Schram, F.R. 1986. Crustacea. Oxford University Press, New York, Oxford.

    Google Scholar 

  • Selden, P.A., Shear, W.A. and Bonamo, P.M. 1991. A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeonotology 34: 241–281.

    Google Scholar 

  • Shear, W.A. 1992. End of the Uniramia taxon. Nature 355: 477–478.

    Google Scholar 

  • Shear, W.A. and Kukalova-Peck, J. 1990. The ecology of palaeozoic terrestrial arthropods: the fossil evidence. Can. J. Zool. 68: 1807–1834.

    Google Scholar 

  • Shultz, J.W. 1989. Morphology of locomotor appendages in Arachnida: evolutionary trends and phylogenetic implications. Zool. J. Linn. Soc. 97: 1–56.

    Google Scholar 

  • Shultz, J.W. 1990. Evolutionary morphology and phylogeny of Arachnida. Cladistics 6: 1–38.

    Google Scholar 

  • Smith, E.L. 1990. An arthropod morphologist looks at six hundred million years of chelicerate evolution. Newsl. Am. Arachnol. Soc. 42: 3–5.

    Google Scholar 

  • Snodgrass, R.E. 1938. Evolution of Annelida, Onychophora and Arthropoda. Smithson. Misc. Coll. 138: 1–77.

    Google Scholar 

  • Störmer, L. 1955a. Chelicerata. In Treatise on invertebrate paleontology, part P, Arthropoda 2, R.C. Moore (ed.), p. 1–3. University of Kansas Press, Lawrence.

    Google Scholar 

  • Störmer, L. 1955b. Merostomata. In Treatise on invertebrate paleontology, part P, Arthropoda 2, R.C. Moore (ed.), p. 4–41. University of Kansas Press, Lawrence.

    Google Scholar 

  • Telford, M.J. and Thomas, R.H. 1995. Demise of the Atelocerata? Nature 376: 123–124.

    Google Scholar 

  • Tiegs, O.W. and Manton, S.M. 1958. The evolution of the Arthropoda. Biol. Rev. Cambridge 33: 255–337.

    Google Scholar 

  • Turbeville, J.M., Pfeifer, D.M., Field, K.G. and Raff, R.A. 1991. The phylogenetic status of arthropods, as inferred from 18S rRNA sequences. Mol. Biol. Evol. 8: 669–686.

    Google Scholar 

  • Van der Hammen, L. 1972. A revised classification of the mites (Arachnidea, Acarida) with diagnosis, a key, and notes on phylogeny. Zool. Mededel. Leiden 47: 273–292.

    Google Scholar 

  • Van der Hammen, L. 1977. A new classification of chelicerata. Zool. Mededel. Leiden 51: 307–319.

    Google Scholar 

  • Van der Hammen, L. 1978. The evolution of the chelicerate life-cycle. Acta Biotheor. 27: 44–60.

    Google Scholar 

  • Van der Hammen, L. 1982. Comparative studies in Chelicerat II. Epimerata (Palpigradi and Actinotrichida). Zool. Verh. Leiden 196: 3–70.

    Google Scholar 

  • Van der Hammen, L. 1985. Functional morphology and affinities of extant Chelicerata in evolutionary perspective. Trans. R. Soc. Edinburgh 76: 137–146.

    Google Scholar 

  • Van der Hammen, L. 1986a. Acarological and arachnological notes. Zool. Mededel. Leiden 60(14): 217–230.

    Google Scholar 

  • Van der Hammen, L. 1986b. Comparative studies in Chelicerata IV. Apatellata, Arachnida, Scorpionida, Xiphosura. Zool. Verh. Leiden 236: 3–52.

    Google Scholar 

  • Van der Hammen, L. 1986c. On some aspects of parallel evolution in Chelicerata. Acta Biotheor. 35: 15–37.

    Google Scholar 

  • Wägele, J.W. 1993. Rejection of the Uniramia hypothesis and implications of the mandibulata concept. Zool. Jb. Systematik 120: 253–288.

    Google Scholar 

  • Wägele, J.W. 1994. Review of methodological problems of ‘computer cladistics’ exemplified with a case study on isopod phylogeny (Crustacea: Isopoda). Z. Zool. Syst. Evolut.-forsch. 32: 81–107.

    Google Scholar 

  • Waggoner, B.M. 1996. Phylogenetic hypotheses of the relationships of arthropods to Precambrian and Cambrian problematical taxa. System. Biol. 45: 190–222.

    Google Scholar 

  • Weygoldt, P. 1979. Significance of later embryonic stages and head development in arthropod phylogeny. In Arthropod phylogeny, A.P. Gupta (ed.), pp. 107–135. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Weygoldt, P. 1986. Arthropod interrelationships - the phylogenetic-systematic approach. Z. Zool. Systematik Evolut.-forsch. 24: 19–35.

    Google Scholar 

  • Weygoldt, P. and Paulus, H.F. 1979a. Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. I. Morphologische Untersuchungen. Z. Zool. Systematik Evolut.-forsch. 17: 85–116.

    Google Scholar 

  • Weygoldt, P. and Paulus, H.F. 1979b. Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. II. Cladogramme und die Entflatung der Chelicerata. Z. Zool. Systematik Evolut.-forsch. 17: 177–200.

    Google Scholar 

  • Wheeler, Q.D., Cartwright, P. and Hayashi, C.Y. 1993. Arthropod phylogeny. A combined approach. Cladistics 9: 1–39.

    Google Scholar 

  • Whittington, H. B. 1989. Olenelloid trilobites: type species, functional morphology and higher classification. Phil Trans. R. Soc. Lond. B324: 111–147.

    Google Scholar 

  • Wills, M.A., Briggs, D.E.G. and Fortey, R.A. 1994. Disparity as an evolutionary index: a comparison of Cambrian and recent arthropods. Palaeobiology 20: 93–130.

    Google Scholar 

  • Wills, M.A., Briggs, D.E.G., Fortey, R. and Wilkinson, M. 1995. The significance of fossils in understanding arthropod evolution. Verh. Dtsch. Zool. Ges. 88: 203–215.

    Google Scholar 

  • Winter, G. 1980. Beiträge zur Morphologie und Embryologie des vorderen Körperabschnittes (Cephalosoma) der Pantopoda Gerstaecker 1863. I. Entstehung und Struktur des Zentralnervensystems. Z. Zool. Syst. Evolut.-forsch. 18: 27–61.

    Google Scholar 

  • Zachvatkin, A. A. 1952. Acarina und ein Vorschlag für ein System der Chelicerata. Parasitol. Sbornik Inst. Zool. Akad. Nauk SSSR 14: 5–46.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weygoldt, P. REVIEW Evolution and systematics of the Chelicerata. Exp Appl Acarol 22, 63–79 (1998). https://doi.org/10.1023/A:1006037525704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006037525704

Navigation