Skip to main content
Log in

Editorial Comment: In response to the article by W. Kessler et al., Assessment of coronary blood flow in humans using phase difference MR imaging: Comparison with intracoronary Doppler flow measurement (see pp. 179-186 in this issue)

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML. Does visual interpretation of the coronary angiogram predict the physiological importance of a coronary stenosis? N Eng J Med 1984; 310: 819-825.

    Google Scholar 

  2. Douchette JW, Corl PD, Payne HM Flynn AE, Goto M, Nassi M, Segal J. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992; 85: 1899-1911.

    Google Scholar 

  3. Donohue TJ, Kern MJ, Auguirre FV, Bach RG, Wolford D, Bell CA, Segal J. Assessing the hemodynamic significance of coronary artery stenoses: analysis of translesional pressure-flow velocity relations in patients. J Am Coll Cardiol 1993; 22: 449-458.

    Google Scholar 

  4. Joye JD, Schulman DS, Lasorda D, Farah T, Donohue BC, Reichek N. Intracoronary Doppler guide wire versus stress single-photon emission computed tomographic thallium-201 imaging in assessment of intermediate coronary stenoses. J Am Coll Cardiol 1994; 24: 940-947.

    Google Scholar 

  5. Tron C, Kern MJ, Donohue TJ, Bach RG, Auguirre FV, Caracciolo EA, Moore JA. Comparison of quantitative angiographically derived and measured translesion pressure and flow velocity in coronary artery disease. Am J Cardiol 1995; 75: 111-117.

    Google Scholar 

  6. Segal J, Kern MJ, Scott NA et al. Alteration of phasic coronary artery flow velocity in humans during percutaneous coronary angioplasty. J Am Coll Cardiol 1992; 20: 276-286.

    Google Scholar 

  7. Davis K, Kennedy JW, Kemp HG, Judkins MP, Gosselin AJ, Killip T. Complications of coronary arteriography from the collaborative study of coronary artery surgery (CASS). Circulation 1979; 59: 1105-1112.

    Google Scholar 

  8. Jansson K, Fransson S-G. Mortality related to coronary angiography. Clinical Radiology 1996; 51: 858-860.

    Google Scholar 

  9. Cohen BL. Catalog of risks extended and updated. Health Phys 1991; 21: 997-1013.

    Google Scholar 

  10. Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 1986; 10: 715-722.

    Google Scholar 

  11. Meier D, Maier S, Boesiger P. Quantitative flow measurements on phantoms and on blood vessels with MR. Magn Reson Med 1988; 8: 25-34.

    Google Scholar 

  12. Bogren HG, Buonocore MH. Measurement of coronary artery flow reserve by magnetic resonance velocity mapping in the aorta. Lancet 1993; 341: 899-900.

    Google Scholar 

  13. van Rossum AC, Visser FR, Hofman MBM et al. Global left ventricular perfusion: non-invasive measurement with cine MR imaging and phase velocity mapping of coronary venous outflow. Radiology 1992; 182: 685-691.

    Google Scholar 

  14. Clarke GD, Eckels R, Chaney C, Smith D, Dittrich J, Hundley WG, NessAiver M, Li HF, Parkey RW, Peshock. Measurement of absolute epicardial coronary artery flow and flow reserve with breath-hold cine phase-contrast magnetic resonance imaging. Circulation 1995; 91: 2627-2634.

    Google Scholar 

  15. Edelman RR, Manning WJ, Gervino E, Li W. Flow velocity quantification in human coronary arteries with fast, breath-hold MR angiography. J Magn Reson Imag 1993; 3: 699-703.

    Google Scholar 

  16. Keegan J, Firmin DN, Gatehouse PD, Longmore D. The application of breath hold phase velocity mapping techniques to the measurement of coronary artery blood flow velocity: phantom data and initial in vivo results. Magn Reson Med 1994; 31: 526-536.

    Google Scholar 

  17. Hofman MB, van Rossum AC, Sprenger M, Westerhof N. Assessment of flow in the right human coronary artery by magnetic resonance phase contrast velocity measurement: effects of cardiac and respiratory motion. Magn Reson Med 1996; 35: 521-531.

    Google Scholar 

  18. Hundley WG, Lange RA, Clarke GD, Meshack BM, Payne J, Landau C, McColl R, Sayad DE, Willet DL, Willard JE, Hillis LD, Peshock RM. Assessment of coronary flow and flow reserve in humans with magnetic resonance imaging. Circulation 1996; 93: 1502-1508.

    Google Scholar 

  19. Tang C, Blatter DD, Parker DL. Accuracy of phase-contrast measurements in the presence of partial volume effects. J Magn Reson Imag 1993; 3: 377-385.

    Google Scholar 

  20. Wolf R, Ehram R, Riederer S, Rossman P. Analysis of systematic and random error in MR volumetric flow measurements. Magn Reson Med 1993; 30: 82-91.

    Google Scholar 

  21. Clarke GD, Hundley WG, McColl RW, Eckels R, Smith D, Chaney C, Li HF, Peshock. Velocity encoded, phase-difference cine MRI measurements of coronary flow: dependence of flow accuracy on the number of cine frames. J Magn Reson Imag 1996; 6: 733-742.

    Google Scholar 

  22. Sakuma H, Blake LM, Amidon TM, O'sullivan M, Szolar DH, Furber AP, Bernstein MA, Foo TK, Higgins CB. Coronary flow reserve: non-invasive measurement in humans with breath-hold velocity-encoded cine MR imaging. Radioogy 1996; 198: 745-750.

    Google Scholar 

  23. Davis CP, Liu P-F, Hauser M, Gohde SC, von Schulthess GK, Debatin JF. Coronary flow and flow reserve measurements in humans with breath-hold magnetic resonance phase contrast velocity mapping. Magn Reson Med 1997; 37: 537-544.

    Google Scholar 

  24. Oshinski JN, Hofland L, Mukundan S, Dixon WT, Parks WJ, Pettigrew RI. Two-dimensional Coronary MR angiography without breath-holding. Radiology 1996; 201: 737-43.

    Google Scholar 

  25. Post JC, Hofman MBM, van Rossum AC, Galjee MA, Valk J, Visser CA. Clinical measurement of phasic coronary flow with velocity encoded cine magnetic resonance imaging using navigator echo based respiratory gating (abstract). Eur Heart J 1996; 17: 323.

    Google Scholar 

  26. Karwatowski SP, Mohiaddin RH, Yang GZ, Firmin DN, St John Sutton M, Underwood RS, Longmore DB. Non-invasive assessment of regional left ventricular long axis motion using magnetic resonance velocity mapping in normal subjects. J Magn Reson Imag 1994; 4: 151-155.

    Google Scholar 

  27. Polzin JA, Korosec FR, Wedding KL, Grist TM, Frayne R, Peters DC, Mistretta CA. Effects of through-plane myocardial motion on phase-difference and complex-difference measurements of absolute coronary flow. J Magn Reson Imag 1996; 6: 113-123.

    Google Scholar 

  28. Chao H, Burstein D. Multibolus stimulated echo imaging of coronary artery flow. J Magn Reson Imag 1997; 7: 603-605.

    Google Scholar 

  29. Poncelet BP, Weiskoff RM, Weeden VJ, Brady TJ, Kantor H. Time of flight quantification of coronary flow with echo-planar MRI. Magn Reson Med 1993; 30: 447-457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, A.M., Mohaiddin, R.H. Editorial Comment: In response to the article by W. Kessler et al., Assessment of coronary blood flow in humans using phase difference MR imaging: Comparison with intracoronary Doppler flow measurement (see pp. 179-186 in this issue). Int J Cardiovasc Imaging 14, 187–189 (1998). https://doi.org/10.1023/A:1006031014410

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006031014410

Navigation