Skip to main content
Log in

Do tannins in leaves of trees and shrubs from African and Himalayan regions differ in level and activity?

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Mature leaves of trees and shrubs from sub-humid tropical regions of Benin (Acioa barteri, Cassia sieberiana, Dialium guineense, Dichrostachys cinerea, Guiera senegalensis, Milletia thonningii, Piliostigma reticulatum) and arid and semiarid regions of Zimbabwe and Niger (Acacia holosericea, A. nilotica, Dichrostachys cinerea, Securidaca longepedunculata, Parinari cuvetelio, Ziziphus mucronata) in Africa, and from sub-tropical region in foot-hills of North-West Humid Himalayan range (Albizia stipulata, Bauhenia variegata, Cedrela toona, Celtis australis, Dendrocalamus hamiltonii, Grewia optiva, Leucocephala leucocephala, Morus alba, Papulus ciliata, Quercus incana, Q. semecarpifolia, Q. glauca, Q. serrata, Q. ilex, Robinia pseudoacacia, Salix tetrasperma) were analysed for crude protein, total phenols (TP), protein precipitation capacity (PPC) and operational activity of tannins (values are as mean ± SE). There was no significant difference in the crude protein values of forages obtained from the Himalayan and African region (15.2 ± 1.16 and 14.1 ± 1.19%, respectively), however the levels of TP and biological value of tannins as PPC were significantly higher for the African forages (TP 15.7 ± 4.27 vs 6.0 ± 1.0%; PPC 327.2 ± 113.6 vs 56 ± 15.9 mg bovine serum albumin precipitated/g). The operational activity of tannins expressed as mg protein precipitated per unit of phenols was also significantly higher in forages from the African regions (1.97 ± 0.47 vs 0.66 ± 0.17). For a small set of leaves from arid and semiarid zones of Middle East (Syria, A. cyanophylla; Israel, A. saligna) and India (Eugenia jambolana, Eucalyptus punctata, Prosopis cineraria and Shorea robusta) TP, PPC and tannin activity were closer to those for the African forages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn JH, Robertson BM, Elliott R and Gutteridge RC BW (1997) Quality assessment of tropical browse legumes: tannin content and protein degradation. Anim Feed Sci Technol 27: 147–156

    Article  Google Scholar 

  • Ahn JH, Elliott R and Norton BW (1997) Oven drying improves the nutritional value of Calliandra calothyrsus and Gliricidia sepium as supplements for sheep given low-quality straw. J Sci Food Agric 75: 503–510

    Article  CAS  Google Scholar 

  • Baumann M (1994) Untersuchung von tanninhaltigen Futterpflanzen auf die Akzeptanz und Verdaulichkeit sowie deren Einfluß auf die Clostridien-Flora im Intestinaltrakt von Schafen. Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany

    Google Scholar 

  • Barry TN and Duncan SJ (1984) The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep, 1. Voluntary intake. Brit J Nutr 51: 485–491

    Article  PubMed  CAS  Google Scholar 

  • Brook R and Owen-Smith N (1994) Plant defences against mammalian herbivores: are juvenile Acacia more heavily defended than mature trees? Bothalia 24: 211–215

    Google Scholar 

  • Butler LG (1989) Sorghum polyphenols. In: Cheeke PR (ed) Toxicants of Plant Origin, Vol. IV, Phenolics. CRC Press Inc, Boca Raton, Florida

    Google Scholar 

  • Cronin G, Paul VJ, Hay ME and Fenical W (1997) Are tropical herbivores more resistant than temperate herbivores to seaweed chemical defense? Diterpenoid metabolites from Dictyota acutiloba as feeding deterrents for tropical versus temperate fishes and urchins. J Chem Ecol 23: 289–302

    Article  CAS  Google Scholar 

  • Devendra C (1990) Shrubs and tree fodders for farm animals. International Development Research Center, Otawa, Canada

    Google Scholar 

  • Gamble GR, Akin DE, Makkar HPS and Becker K (1996) Biological degradation of tannins in Sericea lespedeza by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus analyzed by solid state 13C NMR spectroscopy. Appl Environ Microbiol 62: 3600–3604

    PubMed  CAS  Google Scholar 

  • Garg SK, Makkar HPS, Nagal KB, Sharma SK, Wadhwa DR and Singh B (1992) Toxicological investigations into oak (Quercus incana) leaf poisoning in cattle. Vet Human Toxicol 34: 161–164

    CAS  Google Scholar 

  • Hagerman AE and Butler LG (1989) Choosing appropriate methods and standards for assaying tannins. J Chem Ecol 15: 1795–1810

    Article  CAS  Google Scholar 

  • Iason GR and Murray AH (1996) The energy costs of ingestion of naturally occurring non-tannin plant phenolics by sheep. Physiological Zoology 69: 532–546

    CAS  Google Scholar 

  • Le Houérou HN (1980) The role of browse in the Sahelian and Sudanian zones. In: Le Houérou HN (ed) Browse in Africa. The current State of Knowledge, pp 83–100. ILCA, Addis Ababa

    Google Scholar 

  • Leng RA and Devendra C (1995) Priorities and direction for research for more effective use of feed resources by livestock in Asia. In: Devendra C and Gardiner P (eds) Global Agenda for Livestock Research, Proceedings of the Consultation for the South-East Asia Region, pp 25–40, IRRI, Los Banos, The Philippines

    Google Scholar 

  • Levin DA and York BM Jr (1978) The toxicity of plant alkaloids: an ecogeographic perspective. Biochem. System Ecol 6: 61–76

    Article  CAS  Google Scholar 

  • Makkar HPS (1988) Tannins — bane or boon? Science Reporter 25: 18–23

    Google Scholar 

  • Makkar HPS, Dawra RK and Singh B (1988a) Determination of both tannin and protein in a tannin-protein complex. J Agric Food Chem 36: 523–525

    Article  Google Scholar 

  • Makkar HPS, Dawra RK and Singh B (1988b) Changes in tannin content, polymerization and protein-precipitation capacity in oak (Quereus incana) leaves with maturity. J Sci Food Agric 44: 301–307

    Article  CAS  Google Scholar 

  • Makkar HPS (1989) Protein precipitation methods for quantitation of tannins: a review. J Agric Food Chem 37: 1197–1202

    Article  CAS  Google Scholar 

  • Makkar HPS and Singh B (1991a) Effect of drying conditions on tannin, fibre and lignin levels in mature oak (Quercus incana) leaves. J Sci Food Agric 54: 323–328

    Article  CAS  Google Scholar 

  • Makkar HPS and Singh B (1991b) Composition, tannin levels and in sacco dry matter digestibility of fresh and fallen oak (Quercus incana) leaves. Bioresource Technology 37: 185

    Article  CAS  Google Scholar 

  • Makkar HPS, Singh B and Dawra RK (1991) Tannin levels in the leaves of some oak species at different stages of maturity. J Sci Food Agric 54: 513–519

    Article  CAS  Google Scholar 

  • Makkar, HPS and Singh B (1992a) Effect of steaming and autoclaving oak (Quercus incana) leaves on levels of tannins, fibre and lignin and in-sacco dry matter digestibility. J Sci Food Agric 59: 469–472

    Article  CAS  Google Scholar 

  • Makkar HPS and Singh B (1992b) Detannification of oak leaves: treatments and their optimization. Anim Feed Sci Technol 36: 113–127

    Article  CAS  Google Scholar 

  • Makkar HPS and Singh B (1992c) Effect of wood ash on tannin content of oak (Quercus incana) leaves. Bioresource Technology 41: 85–86

    Article  CAS  Google Scholar 

  • Makkar HPS (1993) Antinutritional Factors in Foods for Livestock. In: Gill M, Owen E, Pollott GE and Lawrence TLJ (eds) Animal Production in Developing Countries, Occassional Publication No. 16, pp 69–85. British Society of Animal Production

  • Makkar HPS and Singh B (1993) Effect of storage and urea addition on detannification and in sacco dry matter digestibility of mature oak (Quercus incana) leaves. Anim Feed Sci Technol 41: 247–259

    Article  CAS  Google Scholar 

  • Makkar HPS, Blummel M, Borowy NK and Becker K (1993) Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J Sci Food Agric 61: 161–165

    Article  CAS  Google Scholar 

  • Makkar HPS, Singh B and Kamra DN (1994) Biodegradation of tannins in oak (Quercus incana) leaves by Sporotricum pulverulrntum. Letters in Applied Microbiology 18: 42–44

    Article  Google Scholar 

  • Makkar HPS, Blümmel M and Becker K (1995) In vitro effects and interactions of tannins and saponins and fate of tannins in rumen. J Sci Food Agric 69: 481–493

    Article  CAS  Google Scholar 

  • Makkar HPS and Becker K (1996a) Effect of pH, temperature, and time on inactivation of tannins and possible implications in detannification studies. J Agric Food Chem 44: 1291–1295

    Article  CAS  Google Scholar 

  • Makkar HPS and Becker K (1996b) Nutritive value and antinutrients of whole and ethanol extracted Moringa oleifera leaves. Anim Feed Sci Technol 63: 211–228

    Article  CAS  Google Scholar 

  • Makkar HPS and Becker K (1997) Nutritional value and antinutritional components in different parts of Moringa oleifera tree. J Agric Sci Camb 128: 311–322

    Article  Google Scholar 

  • Makkar HPS, Aderibigbe AO and Becker K (1997) Comparative evaluation of a non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chemistry (in press)

  • Maydell HJ von (1990) Trees and shrubs of the Sahel: their characteristics and uses. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) Gmb, Eschborn, Germany

    Google Scholar 

  • McSweeney CS, Kennedy PM and John A (1988) Effect of ingestion of hydrolysable tannins in Terminalia oblongata on digestion in sheep fed Stylosanthes hamata. Aust J Agric Res 39: 235–244

    Article  CAS  Google Scholar 

  • Morris P and Robbins MP (1997) Manipulating condensed tannins in forage legumes. In: Mckersie BD and Brown DCW (eds) Biotechnology and the Improvement of Forage Legumes, pp 147–173. CAB International, Wallingford, Oxon, UK

    Google Scholar 

  • Mueller-Harvey I and McAllan AB (1992) Tannins: their biochemistry and nutritional properties. Adv Plant Cell Biochem Biotechnol 1: 151–217

    CAS  Google Scholar 

  • Negi SS, Pal RN and Enrich C (1979) Tree fodders in Himachal Pradesh. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) Gmb, Eschborn, Germany

    Google Scholar 

  • Negi SS, Singh B and Makkar HPS (1989) Influence of method of calculation and length of period of rumen fermentation on the effective degradability of dry matter and nitrogen in some tree forages. Anim Feed Sci Technol 26: 309–322

    Article  Google Scholar 

  • Perchellet EM, Moutaseb HU, Makkar HPS and Perchellet P (1996) Ability of tannins extracted from various tree leaves to inhibit the biomarkers of tumor promotion in mouse skin in vivo. Int J Oncology 9: 801–809

    CAS  Google Scholar 

  • Rittner U and Reed JD (1992) Phenolics and in-vitro degradability of protein and fiber in West African browse. J Sci Food Agric 58: 21–28

    Article  CAS  Google Scholar 

  • SAS 1988. SAS/STAT Program. SAS Institute Inc, Cary, NC, USA

    Google Scholar 

  • Sandusky GE, Fosnaugh CJ, Smith JB and Mohan R (1977) Oak poisoning of cattle in Ohio. J Amer Vet Med Assoc (JAVMA) 171: 627–629

    CAS  Google Scholar 

  • Wood CD, Tiwari, BN, Plumb VE, Powell CJ, Roberts BT, Sirimane VDP, Rossiter JT and Gill M (1994) Interspecies differences and variability with time of protein precipitation activity of extractable tannins, crude protein, ash, and dry matter content of leaves from 13 species of Nepalese fodder trees. J Chem Ecol 20: 3149–3162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makkar, H.P.S., Becker, K. Do tannins in leaves of trees and shrubs from African and Himalayan regions differ in level and activity?. Agroforestry Systems 40, 59–68 (1998). https://doi.org/10.1023/A:1006027231497

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006027231497

Navigation