Skip to main content
Log in

The nuclear pore complex

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The nuclear pore complex is the largest supramolecular complex that assembles in the eukaryotic cell. This structure is highly dynamic and must disassemble prior to mitosis and reassemble after the event. The directed movement of macromolecules into and out of the nucleus occurs through the nuclear pore complex, a potentially regulatory point for translocation. Using biochemical and genetic approaches, several nuclear pore complex proteins from yeast and vertebrates have been well characterized. Although very little is known about plant nuclear pore proteins, research is providing new information that indicates that plant nuclear pore complexes may have some unique features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ach RA, Gruissem W: A small nuclear GTP-binding protein from tomato suppresses a Schizosaccharomyces pombe cell-cycle mutant. Proc Natl Acad Sci USA 91: 5863–5867 (1994).

    Google Scholar 

  2. Adam SA, Sterne-Marr R, Gerace L: Nuclear protein import in permeabilized cells requires soluble cytoplasmic factors. J Cell Biol 111: 807–16 (1990).

    Google Scholar 

  3. Adam SA, Sterne-Marr R, Gerace L: Nuclear protein import using digitonin-permeabilized cells. Meth Enzymol 219: 97–110 (1992).

    Google Scholar 

  4. Aitchison JD, Rout MP, Marelli M, Blobel G, Wozniak RW: Two novel related yeast nucleoporins Nup170p and Nup157p: complementation with the vertebrate homologue Nup155p and functional interactions with the yeast nuclear pore-membrane protein Pom152p. J Cell Biol 131: 1133–1148 (1995).

    Google Scholar 

  5. Aitchison JD, Blobel G, Rout MP: Nup120: a yeast nucleoporin required for NPC distribution and mRNA export. J Cell Biol 131: 1659–1675 (1995).

    Google Scholar 

  6. Aitchison JD, Blobel G, Rout MP: Kap104p: a karyopherin involved in the nuclear transport of messenger RNA binding proteins. Science 274: 624–627 (1996).

    Google Scholar 

  7. Akey CW: Structural plasticity of the nuclear pore complex. J Mol Biol 248: 273–293 (1995).

    Google Scholar 

  8. Akey CW, Rademacher MP: Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryoelectron microscopy. J Cell Biol 122: 1–19 (1993).

    Google Scholar 

  9. Ballas N, Citovsky V: Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94: 10723–10728 (1997).

    Google Scholar 

  10. Bastos R, Lin A, Enarson M, Burke B: Targeting and function in mRNA export of nuclear pore complex protein Nup153. J Cell Biol 134: 1141–1156 (1996).

    Google Scholar 

  11. Bastos R, de Pouplana LR, Enarson M, Bodoor K, Burke B: Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. J Cell Biol 137: 989–1000 (1997).

    Google Scholar 

  12. Belanger KD, Kenna MA, Wei S, Davis LI: Genetic and physical interaction between Srp1 and nuclear pore complex proteins Nup1p and Nup2p. J Cell Biol 126: 619–630 (1994).

    Google Scholar 

  13. Bucci M, Wente SR: In vivo dynamics of nuclear pore complexes in yeast. J Cell Biol 136: 1185–1199 (1997).

    Google Scholar 

  14. Buss F, Stewart M: Macromolecular interaction in the nucleoporin p62 complex of rat nuclear pores: binding of nucleoporin p54 to the rod domain of p62. J Cell Biol 128: 251–261 (1995).

    Google Scholar 

  15. Buss F, Kent H, Stewart M, Bailer SM, Hanover JA: Role of different domains in self-association of rat nucleoporin p62. J Cell Sci 107: 631–638 (1994).

    Google Scholar 

  16. Byrd DA, Sweet DJ, Panic N, Konstantinov KN, Guan T, Saphire AC, Mitchell PJ, Cooper CS, Aebi U, Gerace L: Tpr, a large coiled coil protein whose amino terminus is involved in activation of oncogenic kinases, is localized to the cytoplasmic surface of the nuclear pore complex. J Cell Biol 127: 1515–1526 (1994).

    Google Scholar 

  17. Carmo-Fonseca M, Kern H, Hurt EC: Human nucleoporin p62 and essential yeast nuclear pore protein NSP1 show sequence homology and a similar domain organization. Eur J Cell Biol 55: 17–30 (1991).

    Google Scholar 

  18. Carrington JC, Kasschau KD, Mahajan SK, Schaad MC: Cell-to-cell and long distance transport of viruses in plants. Plant Cell 8: 1669–1681 (1996).

    Google Scholar 

  19. Corbett AH, Silver PA: Nucleocytoplasmic transport of macromolecules. Microbiol Mol Biol Rev 61: 193–211 (1997).

    Google Scholar 

  20. Cordes VI, Waizenegger I, Krohne G: Nuclear pore complex glycoprotein p62 from Xenopus laevis and mouse: cDNA cloning and identification of its glycosylation region. Eur J Cell Biol 55: 31–47 (1991).

    Google Scholar 

  21. Cordes VC, Reidenbach S, Rackwitz HR, Franke WW: Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J Cell Biol 136: 515–529 (1997).

    Google Scholar 

  22. Dabauvalle MC, Benevente R, Chaly N: Monoclonal antibodies to a Mr 68,000 pore complex glycoprotein interfere with nuclear protein uptake in Xenopus oocytes. Chromosoma 97: 193–197 (1988).

    Google Scholar 

  23. Dabauvalle M-C, Loos K, and Scheer U: Identification of a soluble precursor complex essential for nuclear pore assembly in vitro. Chromosoma 100: 56–66 (1990).

    Google Scholar 

  24. Davis LI: The nuclear pore complex. Annu Rev Biochem 64: 865–896 (1995).

    Google Scholar 

  25. Davis LI, Blobel G: Identification and characterization of a nuclear pore complex protein. Cell 45: 699–709 (1986).

    Google Scholar 

  26. Davis LI, Fink GR: The NUP1 gene encodes an essential component of the yeast nuclear pore complex. Cell 61: 965–978 (1990).

    Google Scholar 

  27. Dingwall C, Laskey R: The nuclear membrane. Science 258: 942–947 (1992).

    Google Scholar 

  28. Dingwall C, Kandelslewis S, Seraphin B: A family of Ran binding proteins that includes nucleoporins. Proc Natl Acad Sci USA 92: 7525–7529 (1995).

    Google Scholar 

  29. D'Onofrio M, Starr CM, Park MK, Holt GD, Haltiwanger RS, Hart GW, Hanover JA: Partial cDNA sequence encoding a nuclear pore protein modified by O-linked Nacetylglucosamine. Proc Natl Acad Sci USA 85: 9595–9599 (1988).

    Google Scholar 

  30. Doye V, Hurt EC: Genetic approaches to nuclear pore structure and function. Trends Genet 11: 235–241 (1995).

    Google Scholar 

  31. Doye V, Hurt E: From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol 9: 401–411 (1997).

    Google Scholar 

  32. Doye V, Wepf R, Hurt EC: A novel nuclear pore protein Nup133p with distinct roles in poly(A)C RNA transport and nuclear pore distribution. EMBO J 13: 6062–6075 (1994).

    Google Scholar 

  33. Duverger E, Pellerin-Mendes C, Mayer R, Roche A-C, and Monsigny M: Nuclear import of glycoconjugates is distinct from the classical NLS pathway. J Cell Sci 108: 1325–1332 (1995).

    Google Scholar 

  34. Fabre E, Boelens WC, Wimmer C, Mattaj IW, Hurt EC: Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif. Cell 78: 275–289 (1994).

    Google Scholar 

  35. Featherstone C, Darby MK, Gerace L: A monoclonal antibody against the nuclear pore complex inhibits nucleocytoplasmic transport of protein and RNA in vivo. J Cell Biol 107: 1289–1297 (1988).

    Google Scholar 

  36. Finlay DR, Forbes DJ: Reconstitution of biochemically altered nuclear pores: Transport can be eliminated and restored. Cell 60: 17–29 (1990).

    Google Scholar 

  37. Finlay DR, Newmeyer DD, Price TM, Forbes DJ: Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol 104: 189–200 (1987).

    Google Scholar 

  38. Finlay DR, Meier E, Bradley P, Horecka J, Forbes DJ: A complex of nuclear pore proteins required for pore function. J Cell Biol 114: 169–183 (1991).

    Google Scholar 

  39. Forbes DJ: Structure and function of the nuclear pore complex. Annu Rev Cell Biol 8: 495–527 (1992).

    Google Scholar 

  40. Franke WW: Isolated nuclear membranes. J Cell Biol 31: 9–623 (1966).

    Google Scholar 

  41. Gerace L, Foisner R: Integral membrane proteins and dynamic organization of the nuclear envelope. Trends Cell Biol 4: 127–131 (1994).

    Google Scholar 

  42. Gerace L, Ottaviano Y, Kondor-Koch C: Identification of a major polypeptide of the nuclear pore complex. J Cell Biol 95: 826–837 (1982).

    Google Scholar 

  43. Goldberg MW, Allen TD: High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J Cell Biol 119: 1429–1440 (1992).

    Google Scholar 

  44. Goldberg MW, Allen TD: The nuclear pore complex: threedimensional surface structure revealed by field emission, inlens scanning electron microscopy, with underlying structure uncovered by proteolysis. J Cell Sci 106: 261–274 (1993).

    Google Scholar 

  45. Goldberg MW, Allen T: Structural and functional organization of the nuclear envelope. Curr Opin Cell Biol 7: 301–309 (1995).

    Google Scholar 

  46. Goldberg MW, Allen TD: The nuclear pore complex and lamina: three-dimensional structures and interaction determined by field emission in-lens scanning electron microscopy. J Mol Biol 257: 848–865 (1996).

    Google Scholar 

  47. Goldfarb DS: Whose finger is on the switch? Science 276: 1814–1816 (1997).

    Google Scholar 

  48. Goldstein AL, Snay CA, Heath CV, Cole CN: Pleiotropic nuclear defects associated with a conditional allele of the novel nucleoporin Rat9p/Nup85p. Mol Biol Cell 7: 917–934 (1996).

    Google Scholar 

  49. Görlich D: Nuclear protein import. Curr Opin Cell Biol 9: 412–419 (1997).

    Google Scholar 

  50. Görlich D, Mattaj IW: Nucleocytoplasmic transport. Science 271: 1513–1518 (1996).

    Google Scholar 

  51. Görlich D, Kraft R, Kostka S, Vogel F, Hartmann E, Laskey RA, Mattaj IW, Izaurraide E: Importin provides a link between nuclear protein import and U snRNA export. Cell 87: 21–32 (1996).

    Google Scholar 

  52. Gorsch LC, Dockendorff TC, Cole CN: A conditional allele of the novel-repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes. J Cell Biol 129: 939–955 (1995).

    Google Scholar 

  53. Grandi P, Schlaich N, Tekotte H, Hurt EC: Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p. EMBO J 14: 76–87 (1995).

    Google Scholar 

  54. Greber UF, Gerace L: Nuclear protein import is inhibited by an antibody to a lumenal epitope of a nuclear pore complex glycoprotein. J Cell Biol 116: 15–30 (1992).

    Google Scholar 

  55. Greber UF, Senior A, Gerace L: A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large lumenal domain and a small cytoplasmic tail. EMBO J 9: 1495–1502 (1990).

    Google Scholar 

  56. Haizel T, Merkle T, Pay A, Fejes E, Nagy F: Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase Ran in Arabidopsis. Plant J 11: 93–103 (1997).

    Google Scholar 

  57. Hallberg E, Wozniak RW, Blobel G: An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J Cell Biol 122: 513–521 (1993).

    Google Scholar 

  58. Haltiwanger RS, Kelly WG, Roquemore EP, Blomberg MA, Dong L-YD, Kreppel L, Chou T-Y, Hart GW: Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem Soc Trans 20: 264–269 (1992).

    Google Scholar 

  59. Hanover JA, Cohen CK, Willingham MC, Park MK: Olinked N-acetylglucosamine is attached to proteins of the nuclear pore. J Biol Chem 262: 9887–9894 (1987).

    Google Scholar 

  60. Hart GW: Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem 66: 315–335 (1997).

    Google Scholar 

  61. Harter K, Kircher S, Frohnmeyer H, Krenz M, Nagy F, Schäfer E: Light-regulated modification and nuclear translocation of cytosolic G-box binding factors in parsley. Plant Cell 6: 545–559 (1994).

    Google Scholar 

  62. Heese-Peck A, Raikhel NV: A glycoprotein modified with terminal N-acetylglucosamine and localized at the nuclear periphery shows sequence similarity to aldose-1–epimerases. Plant Cell, in press (1998).

  63. Heese-Peck A, Cole RN, Borkhsenious ON, Hart GW, Raikhel NV: Plant nuclear pore complex proteins are modified by novel oligosaccharides with terminal N-acetylglucosamine. Plant Cell 7: 1459–1471 (1995).

    Google Scholar 

  64. Hicks GR, Raikhel NV: Specific binding of nuclear localization sequences to plant nuclei. Plant Cell 5: 983–994 (1993).

    Google Scholar 

  65. Hicks GR, Raikhel NV: Protein import into the nucleus: an integrated view. Annu Rev Cell Devel Biol 11: 155–188 (1995).

    Google Scholar 

  66. Hicks GR, Raikhel NV: Nuclear localization signal binding proteins in higher plant nuclei. Proc Natl Acad Sci USA 92: 734–738 (1995).

    Google Scholar 

  67. Hicks GR, Smith HMS, Shieh M, Raikhel NV: Three classes of nuclear import signals bind to plant nuclei. Plant Physiol 107: 1055–1058 (1995).

    Google Scholar 

  68. Hicks GR, Smith HMS, Lobreaux S, Raikhel NV: Nuclear import in permeabilized protoplasts from higher plants has unique features. Plant Cell 8: 1337–1352 (1996).

    Google Scholar 

  69. Hinshaw JE, Carragher BO, Milligan RA: Architecture and design of the nuclear pore complex. Cell 69: 1133–1141 (1992).

    Google Scholar 

  70. Holt GD, Snow CM, Senior A, Haltiwanger RS, Gerace L, Hart GW: Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J Cell Biol 104: 1157–1164 (1987).

    Google Scholar 

  71. Hu T, Guan T, Gerace L: Molecular and functional characterization of the p62 complex, an assembly of nuclear pore complex glycoproteins. J Cell Biol 134: 589–601 (1996).

    Google Scholar 

  72. Hurt EC: A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle of Saccharomyces cerevisiae. EMBO J 7: 323–4334 (1988).

    Google Scholar 

  73. Hurwitz ME, Blobel G: NUP82 is an essential yeast nucleoporin required for poly(A)C RNA export. J Cell Biol 130: 1275–1281 (1995).

    Google Scholar 

  74. Iovine MK, Wente SR: A nuclear export signal in Kap95p is required for both recycling the import factor and interaction with the nucleoporin GLFG repeat regions of Nup116p and Nup100p. J Cell Biol 1374: 797–811 (1997).

    Google Scholar 

  75. Iovine MK, Watkins JL, Wente SR: The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor. J Cell Biol 131: 1699–1713 (1995).

    Google Scholar 

  76. Izaurralde E, Jarmolowski A, Beisel C, Mattaj I, Dreyfuss G, Fischer U: A role for the M9 transport signal of hnRNP A1 in mRNA nuclear export. J Cell Biol 137: 27–35 (1997).

    Google Scholar 

  77. Izaurralde E, Kutay U, Mattaj IW, Görlich D: The asymmetric distribution of the constituents of the Ran system is essential for transport in and out of the nucleus. EMBO J 16: 6535–6547 (1997).

    Google Scholar 

  78. Jarnik M, Aebi U: Towards a more complete 3D structure of the nuclear pore complex. J Struct Biol 107: 291–308 (1991).

    Google Scholar 

  79. Jordan EG, Timmis JN, Trewavas AJ: The plant nucleus. In: Tolbert NE (ed), The Biochemistry of Plants, vol 1, pp. 490–588. Academic Press, New York (1980).

    Google Scholar 

  80. Kalinich JF, Douglas MG: In vitro translocation through the yeast nuclear envelope: signal dependent transport requires ATP and calcium. J Cell Biol 264: 17979–17989 (1989).

    Google Scholar 

  81. Kenna MA, Petranka JG, Reilly JL, Davis LI: Yeast N1e3p/Nup170p is required for normal stoichiometry of FG nucleoporins within the nuclear pore complex. Mol Cell Biol 16: 2025–2036 (1996).

    Google Scholar 

  82. Kraemer D, Wozniak RW, Blobel G, Radu A: The human CAN protein, a putative oncogene product associated with myloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc Natl Acad Sci USA 91: 1519–1523 (1994).

    Google Scholar 

  83. Kraemer DC, Strambio-de-Castilla C, Blobel G, Rout MP: The essential yeast nucleoporin NUP159 is located on the cytoplasmic side of the nuclear pore complex and serves in karyopherin-mediated binding of transport substrates. J Biol Chem 270: 19017–19021 (1995).

    Google Scholar 

  84. Kutay U, Izaurrralde E, Bischoff FR, Mattaj IW, Görlich D: Dominant-negative mutants of importin-β block multiple pathways of import and export through the nuclear pore complex. EMBO J 16: 1153–1163 (1997).

    Google Scholar 

  85. Loeb JD, Davis LI, Fink GR: NUP2, a novel yeast nucleoporin, has functional overlap with other proteins of the nuclear pore complex. Mol Biol Cell 4: 209–222 (1993).

    Google Scholar 

  86. Mattaj IW, Boelens W, Izaurralde E, Jarmolowski A, Kambach C: Nucleocytoplasmic transport and snRNP assembly. Mol Biol Reports 18: 79–83 (1993).

    Google Scholar 

  87. Matunis MJ, Blobel G: Biochemical and molecular analysis of the mammalian nuclear pore complex and the regulation of nuclear transport. Mol Biol Cell (Supp 7): 95a (1996).

    Google Scholar 

  88. Meier E, Miller BR, Forbes DJ: Nuclear pore complex assembly studied with a biochemical assay for annulate lamellae formation. J Cell Biol 129: 1459–1472 (1995).

    Google Scholar 

  89. Merkle T, Haizel T, Matsumoto T, Harter K, Dallmann G, Nagy F: Phenotype of the fission yeast cell cycle regulatory mutant pim1–46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. Plant J 6: 555–565 (1994).

    Google Scholar 

  90. Merkle T, Leclerc D, Marshallsay C, Nagy F: A plant in vitro system for the nuclear import of proteins. Plant J 10: 1177–1186 (1996).

    Google Scholar 

  91. Miller MW, Hanover JA: Functional nuclear pores reconstituted with β-1,4 galactose-modified O-linked Nacetylglucosamine glycoproteins. J Biol Chem 269: 9289–9297 (1994).

    Google Scholar 

  92. Moroianu J, Hijikata M, Blobel G, Radu A: Mammalian karyopherin a1 β and a2 β heterodimers: a1 or a2 subunit binds nuclear localization signal and β subunit interacts with peptide repeat-containing nucleoporins. Proc Natl Acad Sci USA 92: 6532–6536 (1995).

    Google Scholar 

  93. Nakielny S, Dreyfuss G: Nuclear export of proteins and RNAs. Curr Opin Cell Biol 9: 420–429 (1997).

    Google Scholar 

  94. Nehrbass U, Fabre E, Dihlman S, Herth W, Hurt EC: Analysis of nucleo-cytoplasmic transport of a thermosensitive mutant of nuclear pore protein Nsp1p. Eur J Cell Biol 62: 1–12 (1993).

    Google Scholar 

  95. Nehrbass U, Rout MP, Maguire S, Blobel G, Wozniak RW: The yeast nucleoporin Nup188p interacts genetically and physically with the core structures of the nuclear pore complex. J Cell Biol 133: 1153–1162 (1996).

    Google Scholar 

  96. Newmeyer DD, Forbes DJ: Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation. Cell 52: 641–653 (1988).

    Google Scholar 

  97. Nigg EA: Nucleocytoplasmic transport: signals, mechanisms, and regulation. Nature 386: 779–787 (1997).

    Google Scholar 

  98. Panté N, Aebi U: The nuclear pore complex. J Cell Biol 122: 977–984 (1993).

    Google Scholar 

  99. Panté N, Aebi U: Sequential binding of import ligands to distinct nucleopore regions during their nuclear import. Science 273: 1729–1732 (1996).

    Google Scholar 

  100. Park MK, D'Onofrio M, Willingham MC, Hanover JA: A monoclonal antibody against a family of nuclear pore proteins (nucleoporins): O-linked acetylglucosamine is part of the immunodeterminant. Proc Natl Acad Sci USA 84: 6462–6466 (1987).

    Google Scholar 

  101. Pollard VW, Michael WM, Naldalny B, Slomi MC, Wang P, Dreyfuss G: A novel receptor mediated nuclear protein import pathway. Cell 88: 985–994 (1996).

    Google Scholar 

  102. Powers MA, Macaulay C, Masiarz FR, Forbes DF: Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore complex protein, p97, import but are defective in nuclear growth and replication. J Cell Biol 128: 721–736 (1995).

    Google Scholar 

  103. Powers MA, Forbes DJ, Dahlberg JE, Lund E: The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathway. J Cell Biol 136: 241–250 (1997).

    Google Scholar 

  104. Radu A, Blobel G and Wozniak, RW: Nup155 is a novel nuclear pore complex protein that contains neither repetitive sequence motifs nor reacts with WGA. J Cell Biol 121: 1–9 (1993).

    Google Scholar 

  105. Radu A, Blobel G, Wozniak RW: Nup107 is a novel nuclear pore complex protein that contains a leucine zipper. J Biol Chem 269: 17600–17605 (1994).

    Google Scholar 

  106. Radu A, Blobel G, Moore MS: Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleoporins. Proc Natl Acad Sci USA 92: 1769–1773 (1995).

    Google Scholar 

  107. Radu A, Moore MS, Blobel G: The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81: 215–222 (1995).

    Google Scholar 

  108. Raikhel NV: Nuclear targeting in plants. Plant Physiol 100: 1627–1632 (1992).

  109. Reichelt R, Holzenburg A, Buhle EL, Jarnik M, Engel A, Aebi U: Correlation between structure and mass distribution of the nuclear pore complex, and of distinct pore complex components. J Cell Biol 110: 883–894 (1990).

    Google Scholar 

  110. Rexach M, Blobel G: Protein import into nuclei: association and dissociation reactions involving transport substrate transport factors, and nucleoporins. Cell 83: 683–692 (1995).

    Google Scholar 

  111. Roberts K, Northcote DH: Structure of the nuclear pore in higher plants. Nature 228: 385–386 (1970).

    Google Scholar 

  112. Rout MP, Blobel G: Isolation of the yeast nuclear pore complex. J Cell Biol 123: 771–783 (1993).

    Google Scholar 

  113. Rout MP, Wente SR: Pores for thought: nuclear pore complex proteins. Trends Cell Biol 4: 357–365 (1994).

    Google Scholar 

  114. Saitoh H, Cooke CA, Burgess WH, Earnshaw WC, Dasso M: Direct and indirect association of the small GTPase Ran with nuclear pore proteins and soluble transport factors: studies in Xenopus laevis egg extract. Mol Biol Cell 7: 1319–1334 (1996).

    Google Scholar 

  115. Sanderfoot AA, Lazarowitz SG: Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins. Trends Cell Biol 6: 353–358 (1996).

    Google Scholar 

  116. Schlaich NL, Haner M, Lustig A, Aebi U, Hurt EC: In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p. Mol Biol Cell 8: 33–46 (1997).

    Google Scholar 

  117. Schlenstedt G, Hurt E, Doye V, Silver PA: Reconstitution of nuclear protein transport with semi-intact yeast cells. J Cell Biol 123: 785–798 (1993).

    Google Scholar 

  118. Scofield GN, Beven AF, Shaw PJ, Doonan JH: Identification and localization of a nucleoporin-like protein component of the plant nuclear matrix. Planta 187: 414–420 (1992).

    Google Scholar 

  119. Segref A, Sharma K, Doye V, Hellwig A, Huber J, Lührmann R, Hurt E: Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)C RNA and nuclear pores. EMBO J 16: 3256–3271 (1997).

    Google Scholar 

  120. Sheng J, Citovsky V: Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8: 1699–1710 (1996).

    Google Scholar 

  121. Shieh M, Wessler SR, Raikhel NV: Nuclear targeting of the maize R protein requires two localization sequences. Plant Physiol 101: 353–361 (1993).

    Google Scholar 

  122. Siniossoglou S, Wimmer C, Rieger M, Doye V, Tekotte H, Weise C, Emig S, Segref A, Hurt EC: A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell 26: 265–275 (1996).

    Google Scholar 

  123. Siomi H, Dreyfuss G: A nuclear localization domain in the hnRNP A1 protein. J Cell Biol 129: 551–560 (1995).

    Google Scholar 

  124. Smith HMS, Hicks GR, Raikhel NV: Importin α from Arabidopsis thaliana is a nuclear import receptor that recognizes three classes of import signals. Plant Physiol 114: 411–417 (1997).

    Google Scholar 

  125. Snow CM, Senior A, Gerace L: Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 104: 1143–1156 (1987).

    Google Scholar 

  126. Soderqvist H, Hallberg E: The large C-terminal region of the integral pore membrane proteins, POM121, is facing the nuclear pore complex. Eur J Cell Biol 64: 184–191 (1994).

    Google Scholar 

  127. Sukegawa J, Blobel G: A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell 72: 29–38 (1993).

    Google Scholar 

  128. Terns MP, Dahlberg JE: Retention and 50 cap trimethylation of U3 snRNA in the nucleus. Science 264: 959–961 (1994).

    Google Scholar 

  129. Ullman KC, Powers MA, Forbes DJ: Nuclear export receptors: from importin to exportin. Cell 90: 967–970 (1997).

    Google Scholar 

  130. Van Deursen J, Boer J, Kasper L, Grosveld G: G2 arrest and impaired nucleocytoplasmic transport in mouse embryos lacking the proto-oncogene CAN/Nup214. EMBO J 15: 5574–5583 (1996).

    Google Scholar 

  131. Varagona MJ, Schmidt RJ, Raikhel NV: Nuclear localization signal(s) required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 4: 1213–1227 (1992).

    Google Scholar 

  132. Wente SR, Blobel G: NUP145 encodes a novel yeast glycineleucine-phenylalanine-glycine (GLFG) nucleoporin required for nuclear envelope structure. J Cell Biol 125: 955–969 (1994).

    Google Scholar 

  133. Wente SR, Rout MP, Blobel G: A new family of yeast nuclear pore complex proteins. J Cell Biol 119: 705–723 (1992).

    Google Scholar 

  134. Whittaker G, Bui M, Helenius A: Nuclear trafficking of in-fluenza virus ribonucleoproteins in heterokaryons. J Virol 70: 2743–2756 (1996).

    Google Scholar 

  135. Wilken N, Senecal J-L, Scheer U, Dabauvalle M-C: Localization of the Ran-GTP binding protein Ran-BP2 at the cytoplasmic side of the nuclear pore complex. Eur J Cell Biol 68: 211–219 (1995).

    Google Scholar 

  136. Wozniak RW, Bartnik E, Blobel G: Primary structure analysis of an integral membrane glycoprotein of the nuclear pore. J Cell Biol 108: 2083–2092 (1989).

    Google Scholar 

  137. Wozniak RW, Blobel G, Rout MP: POM 152 is an integral protein of the pore membrane domain of the yeast nuclear envelope. J Cell Biol 125: 31–42 (1994).

    Google Scholar 

  138. Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E: Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 270: 14209–14213 (1995).

    Google Scholar 

  139. Yokoyama N, Hayashi N, Seki T, Panté N, Ohba T, Nishii K, Kuma K, Hayashida T, Miyata T, Aebi U et al.: A giant nucleopore protein that binds Ran/TC4. Nature 376: 184–188 (1995).

    Google Scholar 

  140. Yoneda Y: How proteins are transported from cytoplasm to the nucleus. J Biochem 121: 811–817 (1997).

    Google Scholar 

  141. Zupan JR, Citovsky V, Zambryski P: Agrobacterium VirE2 protein mediates nuclear uptake of single-stranded DNA in plant cells. Proc Natl Acad Sci USA 93: 2392–2397 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heese-Peck, A., Raikhel, N.V. The nuclear pore complex. Plant Mol Biol 38, 145–162 (1998). https://doi.org/10.1023/A:1006020204649

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006020204649

Navigation