Skip to main content
Log in

The use of the G1 and octosmart programs in detecting temporal changes in the visual field

  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose: The Octopus program Octosmart is able to classify visual fields into six classes. In the program a horizontal bar indicates these classes, and an indicator points to the most probable position, related to the measured pathology. The width of this dashed indicator shows the range of possible fluctuations in the measurement and, therefore, its precision. This study sets out to analyse the suitability of this display mode using other visual-field index data. Methods: The visual fields of 83glaucomatous eyes of 61 patients of various etiological groups and glaucoma suspects were studied for periods varying from 1 to 5 years in a retrospective study. All examinations were performed with the G1 Octopus program and analyzed with the Octosmart program. The statistical significance of linear trends of the visual-field indices, mean defect (MD) and corrected loss variance (CLV), and the class shown by the indicator (POI = position of indicator) were determined, and their regression coefficients were analyzed by means of a linear trend test as a function of time. Results: Of the sample of 83 tested eyes, a total of 18significant trends were recorded after five examinations. All visual-field indices showed a trend towards amelioration. Conclusions: The 18 significant trends observed must be attributed to perturbing long-term fluctuations and, despite their statistical significance, are of little clinical value. It is questionable whether an increased number of examinations per eye would have attenuated the threshold fluctuations sufficiently to make the change infield class more reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flammer J, Drance SM, Schulzer M. Covariates of the longterm fluctuation of the differential light threshold. Arch Ophthalmol 1984; 102: 880–2.

    PubMed  CAS  Google Scholar 

  2. Marra G, Flammer J. The learning and fatigue effects in automated perimetry. Graefe’s Arch Clin Exp Ophthalmol 1991; 229: 501–4.

    CAS  Google Scholar 

  3. Sanabria O, Feuer WJ, Anderson DR. Pseudo-loss of fixation in automated perimetry. Ophthalmology 1991; 89: 76–8.

    Google Scholar 

  4. Bebie H. Computer-assisted evaluation of visual fields. Graefe’s Arch Clin Exp Ophthalmol 1990; 228: 242–5.

    Article  CAS  Google Scholar 

  5. Grehn F, Burkard G. Verfahren zur quantitativen Verlaufskontrolle computerperimetrischer Befunde bei Glaukom. Klin Mbl Augenheilk 1988; 193: 493–8.

    PubMed  CAS  Google Scholar 

  6. Hirsbrunner HP, Fankhauser F, Funkhouser AT, Jenni A. Evaluating human and automated interpretation of visual-field data in perimetry. Jpn J Ophthalmol 1990; 34: 72–80.

    PubMed  CAS  Google Scholar 

  7. Hirsbrunner HP, Fankhauser F, Jenni A, Funkhouser AT. Evaluating a perimetric expert system: experience with Octosmart. Doc Ophthalmol 1990; 228: 237–141.

    CAS  Google Scholar 

  8. Kaufmann H, Flammer J. Die Bebie-Kurve (Kumulative Defektkurve) zur Differenzierung von lokalen und diffusen Gesichtsfelddefekten. Fortschr Ophthalmol 1989; 86: 687–91.

    PubMed  CAS  Google Scholar 

  9. Schwartz B, Nagin P. Probability maps for evaluating automated visual fields. Doc Ophthalmol Proc Ser 1985; 42: 39–48.

    Google Scholar 

  10. Wu DC, Schwartz B, Nagin P. Trend analyses of automated visual fields. Doc Ophthalmol Proc Ser 1989; 49: 175–89.

    Google Scholar 

  11. Flammer J, Drance SM, Augustini L, Funkhouser AT. Quantification of glaucomatous visual-field defects with automated perimetry. Invest Ophthalmol Vis Sci 1985; 26: 176–81.

    PubMed  CAS  Google Scholar 

  12. Funkhouser AT, Flammer J, Fankhauser F, Hirsbrunner HP. A comparison of five methods for estimating general glaucomatous visual-field depression. Graefe’s Archive Clin Exp Ophthalmol 1992; 230: 101–6.

    Article  CAS  Google Scholar 

  13. Heijl A. Computer test logic for automatic perimetry. Acta Ophthalmol 1977; 55: 837–53.

    Article  CAS  Google Scholar 

  14. Wilenky JT, Joondeph BC. Variation in visual-field measurements with an automated perimeter. Am J Ophthalmol 1984; 97: 328–31.

    Google Scholar 

  15. Program OCTOSMART. Interzeag AG, Schlieren, Switzerland, 1989.

  16. Flammer J, Jenni A, Bebie H, Keller B. The Octopus glaucoma G1 program. Glaucoma 1987; 9: 67–72.

    Google Scholar 

  17. Boeglin R, Caprioli M, Zulauf M. Long-term fluctuation of the visual field in glaucoma. Am J Ophthalmol 1992; 113: 396–400.

    PubMed  CAS  Google Scholar 

  18. Gloor B, Schmied U, Fässler A. Changes of glaucomatous field defects–Degree of accuracy of measurements with the automatic perimeter Octopus. Int Ophthalmol 1980; 3: 5–10.

    Article  PubMed  CAS  Google Scholar 

  19. Gloor B, Schmied U, Fässler A. Glaukomgesichtsfelder. Analyse von OCTOPUS-Verlaufsbeobachtungen mit einem statistischen Programm. Klin Mbl Augenheilk 1980; 177: 423–36.

    Article  PubMed  CAS  Google Scholar 

  20. Gloor BA, Vökt BA. Long-term fluctuations versus actual field loss in glaucoma patients. Dev Ophthalmol 1985; 12: 48–69.

    PubMed  CAS  Google Scholar 

  21. Jay JL, Murdoch JR. The rate of visual-field loss in untreated primary open-angle glaucoma. Br J Ophthalmol 1993; 77: 176–8.

    PubMed  CAS  Google Scholar 

  22. Zulauf M, Caprioli J. Fluctuation of the visual field in glaucoma. Ophthalmol Clin North Amer 1991; 4: 671–97.

    Google Scholar 

  23. Hirsch J. Statistical analysis in computerized perimetry. In: Whalen WR, Spaeth GL (eds) Computerized Visual Fields. What they are and how to use them. Thorofare, Slack Inc., pp 309–44, 1985

  24. Nelson-Quigg JM, Twelker JD, Johnson CA. Response properties of normal observers during automated perimetry. Arch Ophthalmol 1989; 107: 1612–5.

    PubMed  CAS  Google Scholar 

  25. Werner EB, Bishop KJ, Koelle J, Douglas GR, LeBlanc R, Mills RP, Schwartz B, Whalen WR, Wilensky JT. A comparison of experienced clinical observers and statistical tests in the detection of progressive visual-field loss in glaucoma using automated perimetry. Arch Ophthalmol 1988; 106: 619–23.

    PubMed  CAS  Google Scholar 

  26. Quigley HA, Tielsch JM, Katz J, Sommer A. Rate of progression in open-angle glaucoma estimated from cross-sectional prevalence of visual field damage. Am J Ophthalmol 1996; 122: 355–63.

    PubMed  CAS  Google Scholar 

  27. Glaucoma Laser Trial Research Group. The Glaucoma Laser Trial (GLT): 6: Treatment group differences in visual field changes. Am J Ophthalmol 1995; 120: 10–22.

    Google Scholar 

  28. Gloor B, Dimitrakos SA, Rabineau PA. Long-term follow-up of glaucomatous fields by computerized (OCTOPUS-) perimetry. Glaucoma Update 1987; III: 123–38.

    Google Scholar 

  29. Chauhan BC, Drance SM, Douglas GR. The use of visual-field indices in detecting changes in the visual field in glaucoma. Invest Ophthalmol Vis Sci 1990; 31: 512–20.

    PubMed  CAS  Google Scholar 

  30. Migdal C, Hitchings R. Control of chronic simple glaucoma with primary medical, surgical and laser treatment. Trans Ophthalmol Soc UK 1986; 105: 653–6.

    PubMed  Google Scholar 

  31. McHam ML, Migdal C, Netland PA. Early trabeculectomy in the management of primary open-angle glaucoma. Int Ophthalmol Clin 1994; 34: 163–72

    PubMed  CAS  Google Scholar 

  32. Broadway DC, Grierson I, Hitchings RA. Adverse effects of antiglaucoma medications on the conjunctiva. Br J Ophthalmol 1994; 77: 590–6.

    Google Scholar 

  33. Palmberg PF. Glaucoma surgery with Mitomycin: A review. Chibret International J Ophthalmol 1994; 10: 16–21.

    Google Scholar 

  34. Serguhn S, Gramer E. Evaluation of measurements of retinal nerve fiber layer thickness with polarization technology for methods of automated analysis of upper and lower retina in glaucoma. Invest Ophthalmol Vis Sci 1994; 35: 1345.

    Google Scholar 

  35. Quigley HA. Reapparaising the risks and benefits of aggressive glaucoma therapy. Arch Ophthalmol 1997; 104: 1985–6.

    CAS  Google Scholar 

  36. Quigley HA, Vitale S. Models of open angle glaucoma prevalence and incidence in the USA. Inv Ophthalmol Vis Sci 1997; 38: 83–91.

    CAS  Google Scholar 

  37. Zeimer R, Sanjay A, Shazhou Z, Quigley HA, Jampel H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. Ophthalmology 1998; 105: 224–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fankhauser II, F., Gloor, B., Iliev, M. et al. The use of the G1 and octosmart programs in detecting temporal changes in the visual field. Int Ophthalmol 21, 311–317 (1997). https://doi.org/10.1023/A:1006003709482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006003709482

Navigation