Skip to main content
Log in

Rice proteins that bind single-stranded G-rich telomere DNA

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In this work, we have identified and characterized proteins in rice nuclear extracts that specifically bind the single-stranded G-rich telomere sequence. Three types of specific DNA-protein complexes (I, II, and III) were identified by gel retardation assays using synthetic telomere substrates consisting of two or more single-stranded TTTAGGG repeats and rice nuclear extracts. Since each complex has a unique biochemical property and differs in electrophoretic mobility, at least three different proteins interact with the G-rich telomere sequences. These proteins are called rice G-rich telomere binding protein (RGBP) and none of them show binding affinity to double-stranded telomere repeats or single-stranded C-rich sequence. Changing one or two G's to C's in the TTTAGGG repeats abolishes binding activity. RGBPs have a greatly reduced affinity for human and Tetrahymena telomeric sequence and do not efficiently bind the cognate G-rich telomere RNA sequence UUUAGGG. Like other telomere binding proteins, RGBPs are resistant to high salt concentrations. RNase sensitivity of the DNA-protein interactions was tested to investigate whether an RNA component mediates the telomeric DNA-protein interaction. In this assay, we observed a novel complex (complex III) in gel retardation assays which did not alter the mobilities or the band intensities of the two pre-existing complexes (I and II). The complex III, in addition to binding to telomeric sequences, has a binding affinity to rice nuclear RNA, whereas two other complexes have a binding affinity to only single-stranded G-rich telomere DNA. Taken together, these studies suggest that RGBPs are new types of telomere-binding proteins that bind in vitro to single-stranded G-rich telomere DNA in the angiosperms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berman J, Tachibana CY, Tye BK: Identification of a telomerebinding activity from yeast. Proc Natl Acad Sci USA 83: 3713–3717 (1986).

    Google Scholar 

  2. Blackburn EH: Structure and function of telomeres. Nature 350: 569–573 (1991).

    Google Scholar 

  3. Buchman AR, Kimmerly WJ, Rine J, Kornberg RD: Two DNAbinding autonomous replication sequences, and telomeres in Saccharomyces cerevisiae. Mol Cell Biol 8: 210–255 (1988).

    Google Scholar 

  4. Buchman AR, Lue NF, Kornberg RD: Connections between transcriptional activators, silencers, and telomeres as revealed by functional analysis of a yeast DNAbinding protein. Mol Cell Biol 8: 5086–5099 (1988).

    Google Scholar 

  5. Cardenas ME, Bianchi A, de Lange T: A Xenopus egg factor with DNAbinding properties characteristic of terminusspecific telomeric proteins. Genes Devel 7: 883–894 (1993).

    Google Scholar 

  6. Chong L, Steensel BV, Broccoli D, Erdjument-Bromage H, Hanish J, Tempst P, de Lange T: A human telomeric protein. Science 270: 1663–1667 (1995).

    Google Scholar 

  7. de Lange T: Activation of telomerase in a human tumor. Proc Natl Acad Sci USA 91: 2882–2885 (1994).

    Google Scholar 

  8. Fang G, Cech TR: Oxytricha telomerebinding protein: DNAdependent dimerization of the α and β subunits. Proc Natl Acad Sci USA 90: 6056–6060 (1993).

    Google Scholar 

  9. Fang G, Cech TR: The β subunit of Oxytricha telomerebinding protein promotes Gquartet formation by telomeric DNA. Cell 74: 875–885 (1993).

    Google Scholar 

  10. Ganal MW, Lapitan NL, Tanksley SD: Macrostructure of the tomato telomeres. Plant Cell 3: 87–94 (1991).

    Google Scholar 

  11. Giraldo R, Rhodes D: The yeast telomerebinding protein RAP1 binds to and promotes the formation of DNAquadruplexes in telomeric DNA. EMBO J 13: 2411–2420 (1994).

    Google Scholar 

  12. Gottschling DE, Zakian VA: Telomere proteins: specific recognition and protection of the natural termini of Oxytricha macronuclear DNA. Cell 47: 195–205 (1986).

    Google Scholar 

  13. Gray JT, Celander DW, Price CM, Cech TR: Cloning and expression of genes for the Oxytricha telomerebinding protein: specific subunit interactions in the telomeric complex. Cell 67: 807–814 (1991).

    Google Scholar 

  14. Greider CW: Telomere length regulation. Annu Rev Biochem 65: 337–365 (1996).

    Google Scholar 

  15. Greider CW, Blackburn EH: Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43: 405–413 (1985).

    Google Scholar 

  16. Greider CW, Blackburn EH: The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51: 887–898 (1987).

    Google Scholar 

  17. Greider CW, Blackburn EH: A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337: 331–337 (1989).

    Google Scholar 

  18. Harley CB: Telomere loss: mitotic clock or genetic time bomb? Mutat Res 256: 271–282 (1991).

    Google Scholar 

  19. Henderson EF, Blackburn EH: An overhanging 30 terminus is a conserved feature of telomeres. Mol Cell Biol 9: 345–348 (1989).

    Google Scholar 

  20. Ishikawa F, Matunis MJ, Dreyfuss G, Cech TR: Nuclear proteins that bind the premRNA 3′ splice site sequence r(UUAG/G) and the human telomeric DNAsequence d(TTAGGG)n. Mol Cell Biol 13: 4301–4310 (1993).

    Google Scholar 

  21. Kilian A, Kleinhofs A: Cloning and mapping of telomereassociated sequences from Hordeum vulgare L. Mol Gen Genet 235: 153–156 (1992).

    Google Scholar 

  22. Kim NW, Piatyszek MA, Prowse, KR, Harley CB, West MD, Ho PLC, Coviello GM, Wright WE, Weinrich SL, Shay JW: Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015 (1994).

    Google Scholar 

  23. Klobutcher LA, Swanton MT, Donini P, Prescott DM: All genesized DNA molecules in four species of hypotrichs have the same terminal sequences and an unusual 3′ terminus. Proc Natl Acad Sci USA 78: 3015–3019 (1981).

    Google Scholar 

  24. Kyrion G, Boakye KA, Lustig AJ: Cterminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol Cell Biol 12: 5159–5173 (1992).

    Google Scholar 

  25. Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM: Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75: 1083–1093 (1993).

    Google Scholar 

  26. Longtine MS, Petracek ME, Wilson NM, Berman J: A yeast telomere binding activity binds to two related telomere sequence motifs and is indistinguishable from RAP1. Curr Genet 16: 225–239 (1989).

    Google Scholar 

  27. Lustig AJ, Kurtz S, Shore D: Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science 250: 549–553 (1990).

    Google Scholar 

  28. Makarov VL, Lejnine S, Bedoyan J, Langmore JP: Nucleosomal organization of telomerespecific chromatin in rat. Cell 73: 775–787 (1993).

    Google Scholar 

  29. Morin GB: The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59: 521–529 (1989).

    Google Scholar 

  30. Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497 (1962).

    Google Scholar 

  31. Nugent CI, Hughes TR, Lue NF, Lundblad V: Cdc13p: a singlestrand telomeric DNAbinding protein with a dual role in yeast telomere maintenance. Science 274: 249–252 (1996).

    Google Scholar 

  32. Petracek ME, Konkel LMC, Kable ML, Berman J: A Chlamydomonas protein that binds singlestranded Grich telomere DNA. EMBO J 13: 3648–3658 (1994).

    Google Scholar 

  33. Price CM: Telomere structure in Euplotes crassus: characterization of DNAprotein interactions and isolation of a telomerebinding protein. Mol Cell Biol 10: 3421–3431 (1990).

    Google Scholar 

  34. Price CM, Cech TR: Telomeric DNAprotein interactions of Oxytricha macronuclear DNA. Genes Devel 1: 783–793 (1987).

    Google Scholar 

  35. Price CM, Cech TR: Properties of the telomeric DNAbinding protein from Oxytricha nova. Biochemistry 28: 769–774 (1989).

    Google Scholar 

  36. Price CM, Skopp R, Krueger J, Williams D: DNA recognition and binding by the Euplotes telomere protein. Biochemistry 31: 10835–10843 (1992).

    Google Scholar 

  37. Regad F, Lebas M, Lescure B: Interstitial telomeric repeats within the Arabidopsis thaliana genome. J Mol Biol 239:163–169 (1994).

    Google Scholar 

  38. Richards EJ, Ausubel FM: Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53: 127–136 (1988).

    Google Scholar 

  39. Romero DP, Blackburn EH: A conserved secondary structure for telomerase RNA. Cell 67: 343–353 (1991).

    Google Scholar 

  40. Sheng H, Hou Z, Schierer T, Dobbs DL, Henderson E: Identification and characterization of a putative telomere endbinding protein from Tetrahymena thermophila. Mol Cell Biol 15: 1144–1153 (1995).

    Google Scholar 

  41. Shippen-Lentz D, Blackburn EH: Functional evidence for an RNA template in telomerase. Science 247: 546–552 (1990).

    Google Scholar 

  42. Sundquist WI, Klug A: TelomericDNAdimerizes by formation of guanine tetrads between hairpin loops. Nature 342: 825–829 (1989).

    Google Scholar 

  43. Sussel L, Shore D: Separation of transcriptional activation and silencing functions of RAP1encoded repressor/activator protein. 1. Isolation of viable mutants affecting both silencing and telomere length. Proc Natl Acad Sci USA 88: 7749–7753 (1991).

    Google Scholar 

  44. Williamson JR, Raghuraman MK, Cech TR: Monovalent cation induced structure of telomeric DNA: the Gquartet model. Cell 59: 871–880 (1989).

    Google Scholar 

  45. Wright JH, Gottschling DE, Zakian VA: Saccharomyces telomeres assume a nonnucleosomal chromatin structure. Genes Devel 6: 197–210 (1992).

    Google Scholar 

  46. Wu KS, Tanksley SD: Genetic and physical mapping of telomeres and macrosatellites of rice. Plant Mol Biol 22: 861–872 (1993).

    Google Scholar 

  47. Zakian VA: Structure and function of telomeres. Annu Rev Genet 23: 579–604 (1989).

    Google Scholar 

  48. Zakian VA: Telomere: beginning to understand the end. Science 270: 1601–1606 (1995)

    Google Scholar 

  49. Zhong Z, Shiue L, Kaplan S, de Lange T: A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol Cell Biol 12: 4834–4843 (1992).

    Google Scholar 

  50. Zentgraf U: Telomerebinding proteins of from Arabidopsis thaliana. Plant Mol Biol 27: 467–475 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.H., Kim, W.T. & Chung, I.K. Rice proteins that bind single-stranded G-rich telomere DNA. Plant Mol Biol 36, 661–672 (1998). https://doi.org/10.1023/A:1005994719175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005994719175

Navigation