Skip to main content
Log in

Differential regulation of 1-aminocyclopropane-1-carboxylate synthase gene family and its role in phenotypic plasticity in Stellaria longipes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Using degenerate oligonucleotides that correspond to conserved amino acid residues of known 1-aminocyclopropane-1-carboxylic acid (ACC) synthases, we cloned a genomic fragment that encodes ACC synthase in Stellaria longipes. Southern analysis suggests that ACC synthase is encoded by a small gene family comprising about 4 members. We isolated four unique ACC synthase cDNA clones under different growth conditions from alpine and prairie ecotypes of S. longipes. Northern analyses suggest that ACC synthase genes are differentially and synergistically regulated by photoperiod and temperature. Such differential regulation of ACC synthase genes positively correlate with the levels of ACC and ethylene. Since ethylene has previously been shown to partly control the stem elongation plasticity in S. longipes, we propose that differential regulation of ACC synthase genes may represent one of the underlying molecular mechanisms of phenotypic plasticity in S. longipes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abeles FB, Morgan PW, Saltveit ME Jr: Ethylene in Plant Biology, 2nd ed. Academic Press, New York (1992).

    Google Scholar 

  2. Botella JR, Schlagnhaufer CD, Arteca RN, Phillips AT: Identification and characterization of three putative genes for 1-aminocyclopropane-1-carboxylate synthase from etiolated mungbean hypocotyl segments. Plant Mol Biol 18: 793–797 (1992).

    PubMed  Google Scholar 

  3. Bradshaw AD: Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13: 115–155 (1965).

    Google Scholar 

  4. Cai Q, Macdonald SE, Chinnappa CC: Studies on the Stellaria longipes complex (Caryophyllaceae): isozyme variability and the relationship between Stellaria longipes and S. longifolia. Plant Syst Evol 173: 129–141 (1990).

    Google Scholar 

  5. Chapin FS, Shaver GR: Arctic. In: Chabot BF, Mooney HA (eds) Physiological ecology of North American plant communities, pp. 16–32. Chapman and Hall, New York (1985).

    Google Scholar 

  6. Chinnappa CC, Morton JK: Studies on the Stellaria longipes complex (Caryophyllaceae): biosystematics. Syst Bot 9: 60–73 (1984).

    Google Scholar 

  7. Destefano-Beltran LJC, Van Caeneghem W, Gielen J, Richard L, Van Montagu M, Van Der Straeten D: Characterization of three members of the ACC synthase gene family in Solanum tuberosum L. Mol Gen Genet 246: 496–508 (1995).

    PubMed  Google Scholar 

  8. Doyle JJ, Doyle JL: Isolation of plant DNA from fresh tissue. Focus 12: 13–15 (1987).

    Google Scholar 

  9. Dudley SN, Schmitt J: Testing the adaptive plasticity hypothesis: Density-dependent selection on manipulated stem length in Impatiens capensis. Am Nat 147: 445–465 (1996).

    Google Scholar 

  10. Emery RJN: Morphological and physiological phenotypic plasticty in alpine and prairie ecotypes of Stellaria longipes. Ph.D. thesis, University of Calgary, Calgary, Canada (1994).

    Google Scholar 

  11. Emery RJN, Chinnappa CC, Chmielewski JG: Specialization, plant strategies and phenotypic plasticity in populations of Stellaria longipes along an elevational gradient. Int J Plant Sci 155: 203–219 (1994).

    Google Scholar 

  12. Emery RJN, Reid DM, Chinnappa CC: Phenotypic plasticity of stem elongation in two ecotypes of Stellaria longipes: the role of ethylene and response to wind. Plant Cell Envir 17: 691–700 (1994).

    Google Scholar 

  13. Emery RJN, Kathiresan A, Reid DM, Chinnappa CC: Ecotypic differences for rhythmicity of ethylene production in Stellaria longipes and the role of ACC and ACC oxidase. Can J Bot, in press (1997).

  14. Feinberg AP, Vogelstein B: A technique for radiolabelling DNArestriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  15. Fitter AH, Hay RKM: Environmental Physiology of Plants. vol. 2. Academic Press, Toronto (1989).

    Google Scholar 

  16. Fluhr R, Mattoo AK: Ethylene: biosynthesis and perception. Crit Rev Plant Sci 15: 479–523 (1996).

    Google Scholar 

  17. Frohman MA, Dush MK, Martin GR: Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85: 8998–9002 (1988).

    PubMed  Google Scholar 

  18. Huang P-L, Parks JE, Rottmann WH, Theologis A: Two genes encoding 1-aminocyclopropane-1-carboxylate synthase in zucchini (Cucurbita pepo) are clustered and similar, but differentially expressed. Proc Natl Acad Sci USA 88: 7021–7025 (1991).

    PubMed  Google Scholar 

  19. Huse HD, Hansen C: cDNA cloning redefined: a rapid, efficient, directional method. Strategies 1: 1–3 (1988).

    Google Scholar 

  20. Kathiresan A, Reid DM, Chinnappa CC: Light-and temperature-entrained circadian regulation of activity and mRNA accumulation of 1-aminocyclopropane-1-carboxylic acid oxidase in Stellaria longipes. Planta 199: 329–335 (1996).

    PubMed  Google Scholar 

  21. Kathiresan A, Tung P, Chinnappa CC, Reid DM: γ-aminobutyric acid stimulates ethylene biosynthesis in sun-flower (Helianthus annuus L.). Plant Physiol, in press (1997).

  22. Kende H: Ethylene biosynthesis. Annu Rev Plant Physiol Mol Biol 44: 283–307 (1993).

    Google Scholar 

  23. Li N, Mattoo AK: Deletion of the carboxy-terminal region of 1-aminocyclopropane-1-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalytically hyperactive, monomeric enzyme. J Biol Chem 269: 6908–6917 (1994).

    PubMed  Google Scholar 

  24. Liang X, Abel S, Keller JA, Shen NF, Theologis A: The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Proc Natl Acad Sci USA 89: 11046–11050 (1992).

    PubMed  Google Scholar 

  25. Macdonald SE, Chinnappa CC: Population differentiation for phenotypic plasticity in the Stellaria longipes complex. Am J Bot 75: 1191–2000 (1989).

    Google Scholar 

  26. Macdonald SE, Chinnappa CC, Reid DM: Studies on the Stellaria longipes complex: phenotypic plasticity. I. Response of stem elongation to temperature and photoperiod. Can J Bot 62: 414–419 (1984).

    Google Scholar 

  27. Machakova I, Chauvaux N, DeWitte W, Onckelen HV: Diurnal fluctuations in ethylene formation in Chenopodium rubrum. Plant Physiol 113: 981–985 (1997).

    PubMed  Google Scholar 

  28. Ohta T: Evolution and Variation of Multigene Families. Springer-Verlag, Berlin (1980).

    Google Scholar 

  29. Reid DM, Beall FD, Pharis RP: Environmental cues in plant growth and development. In: Steward FC, Bidwell RGS (eds) Growth and Development, vol 10, pp. 65–181. Academic Press, San Diego (1991).

    Google Scholar 

  30. Rodrigues-Pousada RA, Rycke RD, Deodonder A, Van Caeneghem W, Engler G, Van Montagu M, Van Der Straeten D: The Arabidopsis 1-aminocyclopropane-1-carboxylate synthase gene 1 is expressed during early development. Plant Cell 5: 897–911 (1993).

    PubMed  Google Scholar 

  31. Sachs RM: Stem elongation. Annu Rev Plant Physiol 16: 73–96 (1965).

    Google Scholar 

  32. Saltveit ME, Yang SF: Ethylene. In: Rivier L, Crozier A (eds) Principles and Practise of Plant Hormone Analysis, pp. 367–396. Academic Press, London (1987).

    Google Scholar 

  33. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  34. Schmitt J, McCormac AC, Smith H: A test of the adaptive plasticity hypothesis using transgenic and mutant plants disabled in phytochrome-mediated elongation responses to neighbours. Am Nat 146: 937–953 (1995).

    Google Scholar 

  35. Smith H: Signal perception, differential expression with in multigene families and the molecular basis of phenotypic plasticity. Plant Cell Envir 13: 585–594 (1990).

    Google Scholar 

  36. Stearns SC: The evolutionary significance of phenotypic plasticity. BioScience 39: 436–445 (1989).

    Google Scholar 

  37. Subramaniam K, Abbo S, Ueng PP: Isolation of two differentially expressedwheatACC synthase cDNAs and the characterization of one of their gene with root-predominant expression. Plant Mol Biol 31: 1009–1020 (1996).

    PubMed  Google Scholar 

  38. Trewavas AJ, Jennings DH: Introduction. In: Plasticity in Plants. Symposia of the Society of Experimental Biology, vol. 40, pp. 1–4 (1986).

    Google Scholar 

  39. Van Der Straeten D, Wiemeersch LV, Goodman HM, Van Montagu M: Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato. Proc Natl Acad Sci USA 87: 4859–4863 (1990).

    PubMed  Google Scholar 

  40. Verwoerd TC, Dekker BMM, Hoekema A: A small-scale procedure for rapid isolation of plant RNAs. Nucl Acid Res 17: 2362 (1989).

    Google Scholar 

  41. Voesenek LACJ, Blom CWPM: Plant hormones: an ecophysiological view on timing and plasticity. J Ecol 84: 111–119 (1996).

    Google Scholar 

  42. White MF, Vasquez J, Yang SF, Kirsch JF: Expression of apple 1-aminocyclopropane-1-carboxylate synthase in Escherichia coli: kinetic characterization of wild-type and active-site mutant forms. Proc Natl Acad Sci USA 91: 12428–12432 (1994).

    PubMed  Google Scholar 

  43. Yang SF, Hoffman NE: Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35: 155–189 (1984).

    Google Scholar 

  44. Yip W-K, Dong JG, Kenny JW, Thompson GA, Yang SF: Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase. Proc Natl Acad Sci USA 87: 7930–7934 (1990).

    PubMed  Google Scholar 

  45. Yip W-K, Moore T, Yang SF: Differential accumulation of transcripts of four tomato 1-aminocyclopropane-1-carboxylate synthase homologs under various conditions. Proc Natl Acad Sci USA 89: 2475–2479 (1992).

    PubMed  Google Scholar 

  46. Zarembinski TI, Theologis A: Anaerobiosis and plant growth hormones induce two genes encoding 1-aminocyclopropane-1-carboxylate synthase in rice (Oryza sativa L.). Mol Biol Cell 4: 363–373 (1993).

    PubMed  Google Scholar 

  47. Zarembinski TI, Theologis A: Ethylene biosynthesis and action: a case of conservation. Plant Mol Biol 26: 1579–1597 (1994).

    PubMed  Google Scholar 

  48. Zhang X-H, Chinnappa CC: Triose phosphate isomerase of Stellaria longipes (Caryophyllaceae). Genome 37: 148–156 (1994).

    PubMed  Google Scholar 

  49. Zhang X-H, Chinnappa CC: Molecular cloning of a cDNA encoding cytochrome C of Stellaria longipes (Caryophyllaceae) and evolutionary implications. Mol Biol Evol 11: 365–375 (1994).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kathiresan, A., Nagarathna, K., Moloney, M.M. et al. Differential regulation of 1-aminocyclopropane-1-carboxylate synthase gene family and its role in phenotypic plasticity in Stellaria longipes. Plant Mol Biol 36, 265–274 (1998). https://doi.org/10.1023/A:1005994118535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005994118535

Navigation