Skip to main content
Log in

Implication of 5′-flanking sequence elements in expression of a plant tRNALeugene

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A comparison of 5′-flanking sequences from 68 different nuclear plant tRNA genes was analyzed to find consensus sequences. Three conserved features stood out, all of which are present in the tRNALeu gene used in this study: (1) a high proportion of A and T residues upstream of all tRNA genes; (2) a region of low duplex stability about 30–35 bp before the coding sequence, often containing a TATA-box like motif; (3) a CAA triplet in the region of the presumed transcription start. The effect of replacement of the AT-rich upstream sequences with GC-rich sequences or unrelated AT-rich sequences was tested by progressive deletions and by inserting randomly cloned sequences upstream of the tRNA gene. GC-rich 5′-flanking sequences were found to be generally incompatible with high levels of expression. The TATA-box like motifs and the CAA triplet were removed or altered by deletion or directed mutagenesis. Mutation of the CAA triplet significantly decreased expression of the tRNALeu gene, suggesting that this CAA triplet is important for transcription efficiency, but mutation or elimination of the TATA-box like motifs generally had little effect. The presence or absence of each of these features in tRNA genes from other organisms is discussed; there are clear and interesting differences between plant tRNA genes and those of yeast and mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akama K, Tanifuji S: Sequence analysis of three tRNAPhe nuclear genes and a mutated gene, and one gene for tRNAAla from Arabidopsis thaliana. Plant Mol Biol 15: 337–346 (1990).

    PubMed  Google Scholar 

  2. Arnold GJ, Gross HJ: Unrelated leader sequences can effi-ciently promote human tRNA gene transcription. Gene 51: 23–46 (1987).

    Google Scholar 

  3. Bradford M: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248–254 (1976).

    Article  PubMed  Google Scholar 

  4. Breslauer KJ, Frank R, Blöcker H, Marky LA: Predicting DNA duplex stability from the base sequence. Proc Natl Acad Sci USA 83: 3746–3750 (1986).

    Google Scholar 

  5. Bucher P: Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Moi Biol 212: 563–578 (1990).

    Google Scholar 

  6. Campbell-Raymond K, Raymond GJ, Johnson JD: In vivo modulation of yeast tRNA gene expression by 50-flanking sequences. EMBO J 4: 2649–2656 (1985).

    PubMed  Google Scholar 

  7. Carneiro VTC, Pelletier G, Small I: Transfer RNA-mediated suppression of stop codons in protoplasts and transgenic plants. Plant Mol Biol 22: 681–690 (1993).

    PubMed  Google Scholar 

  8. Choisne N, Martin-Canadell A, Small I: Transactivation of a target gene using a suppressor tRNA in transgenic tobacco plants. Plant J 11: 597–604 (1997).

    PubMed  Google Scholar 

  9. Chupeau Y, Bourgin JP, Missonier C, Dorion N, Morel G: Préparation et culture de protoplastes de divers Nicotiana. CR Acad Sci Paris 278: 1565–1568 (1974).

    Google Scholar 

  10. DeFranco D, Sharp S, Söll D: Identification of regulatory sequences contained in the 5′-flanking region of Drosophila lysine tRNA2 genes. J Biol Chem 256: 12424–12429 (1981).

    PubMed  Google Scholar 

  11. Dingermann T, Nerke K, Marschalek R: Influence of different 50-flanking sequences of tRNAgenes on their in vivo transcription efficiencies in Saccharomyces cerevisiae. Eur J Biochem 170: 217–224 (1987).

    PubMed  Google Scholar 

  12. Fruscoloni P, Zamboni M, Panetta G, De Paolis A, Tocchini-Valentini GP: Mutational analysis of the transcription start site of the yeast tRNALeu3 gene. Nucl Acids Res 23: 2914–2918 (1995).

    PubMed  Google Scholar 

  13. Fuchs T, Beier D, Beier H: The tRNATyr multigene family of Nicotiana rustica: genome organization, sequence analyses and expression in vitro. Plant Mol Biol 20: 869–878 (1992).

    PubMed  Google Scholar 

  14. Furter R, Hall BD: Specific transcription and reinitiation of class III genes in wheat embryo nuclei and chromatin. Plant Mol Biol 12: 567–577 (1989).

    Google Scholar 

  15. Gabrielsen OS, Sentenac A: RNA polymerase III (C) factors and its transcription factors. Trends Biochemistry 16: 412–416 (1991).

    Google Scholar 

  16. Geiduschek EP, Tocchini-Valentini GP: Transcription by RNA polymerase III. Annu Rev Biochem 57: 873–914 (1988).

    Article  PubMed  Google Scholar 

  17. Goffeau A et al.: The yeast genome directory. Nature 387 (suppl.): 1–105 (1997).

    Google Scholar 

  18. Green GA, Maréchal L, Weil JH, Guillemaut P: A Phaseolus vulgaris mitochondrial tRNALeu is identical to its cytoplasmic counterpart: sequencing and in vivo transcription of the gene corresponding to the cytoplasmic tRNALeu. Plant Mol Biol 10: 13–19 (1987).

    Google Scholar 

  19. Guerche P, Bellini C, Lemoullec JM, Caboche M: Use of transient expression assay for the optimization of direct gene transfer into tobacco mesophyll protoplasts by electroporation. Biochimie 69: 621–628 (1987).

    Article  PubMed  Google Scholar 

  20. Hofmann J, Schumann G, Borschet G, Gosseringer R, Bach M, Bertling WM, Marschalek R, Dingermann T: Transfer RNA genes fromDictyostelium discoideumare frequently associated with repetitive elements and contain consensus boxes in their 5′-and 3′-flanking regions. J Mol Biol 222: 537–552 (1991).

    PubMed  Google Scholar 

  21. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    PubMed  Google Scholar 

  22. Joazeiro CAP, Kassavetis GA, Geiduschek EP: Alternative outcomes in assembly of promoter complexes: the roles of TBP and a flexible linker in placing TFIIIB on tRNA genes. Genes Devel 10: 725–739 (1996).

    PubMed  Google Scholar 

  23. Juo ZS, Chiu TK, Leiberman PM, Baikalov I, Berk AJ, Dickerson RE: How proteins recognize the TATA box. J Mol Biol 261: 239–254 (1996).

    PubMed  Google Scholar 

  24. Kassavetis GA, Braun BR, Nguyen LH, Geiduschek P: S. cerevisiae TFIIIB is the transcription initiation factor proper of RNApolymerase III, while TFIIIA and TFIIIC are assembly factors. Cell 60: 235–245 (1990).

    PubMed  Google Scholar 

  25. Kassavetis GA, Joazeiro CAP, Pisano M, Geiduschek EP, Colbert T, Hahn S, Blanco JA: The role of the TATA-binding protein in the assembly and function of themultisubunit yeastRNA polymerase III transcription factor, TFIIIB. Cell 71: 1055–5064 (1992).

    PubMed  Google Scholar 

  26. Larson D, Bradford-Wilcox J, Young LS, Sprague KU. A short 5′ flanking region containing conserved sequences is required for silkworm alanine tRNA gene activity. Proc Natl Acad Sci USA 80: 3416–3420 (1983).

    Google Scholar 

  27. Maréchal-Drouard L, Weil J, Dietrich A: Transfer RNAs and transfer RNA genes in plants. Annu Rev Plant Physiol 44: 13–32 (1993).

    Google Scholar 

  28. Mukumoto F, Hirose S, Imaseki H, Yamazaki K: DNA sequence requirement of a TATAelement-binding protein from Arabidopsis for transcription in vitro. Plant Mol Biol 23: 995–1003 (1993).

    PubMed  Google Scholar 

  29. Ow DW, Wood KV, Delucas M, De Wet JR, Helinski DR, Howell SH: Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856–859 (1986).

    Google Scholar 

  30. Palida FA, Hale C, Sprague KU: Transcription of a silkworm tRNAAla(C) gene is directed by twoAT-rich upstreamsequence elements. Nucl Acids Res 21: 5875–5881 (1993).

    PubMed  Google Scholar 

  31. Reddy PS, Padayatty JD: Effects of 5′ flanking sequences and changes in the 50 internal control region on the transcription of rice tRNAGly gene. Plant Mol Biol 11: 575–583 (1988).

    Google Scholar 

  32. Sajjadi FG, Miller RC, Spiegelman GB: Identification of sequences in the 50 flanking region of a Drosophila melanogaster tRNAVal gene that modulate its transcription in vitro. Mol Gen Genet 206: 279–284 (1987).

    Google Scholar 

  33. Sajjadi FG, Spiegelman GB: Modulation of a Drosophila melanogaster tRNA gene transcription in vitro by a sequence TNNCT in its 5′ flank. Gene 60: 13–19 (1987).

    PubMed  Google Scholar 

  34. Schaack J, Sharp S, Dingermann T, Johnson-Burke D, Cooley L, Söll D: The extent of a eukaryotic tRNA gene. J Biol Chem 259: 1461–1467 (1984).

    PubMed  Google Scholar 

  35. Shaw KJ, Olson MV: Effects of altered 5′-flanking sequences on the in vivo expression of a Saccharomyces cerevisiae tRNATyr gene. Mol Cell Biol 4: 657–665 (1984).

    PubMed  Google Scholar 

  36. Sprague KU: Transcription of eukaryotic tRNA genes. In: Söll D, RajBhandary U (eds) tRNA: Structure, Biosynthesis, and Function, pp. 31–50. American Society for Microbiology, Washington, DC (1995).

    Google Scholar 

  37. Stange N, Beier D, Beier H: Expression of nuclear tRNA' genes from Arabidopsis thaliana in HeLa cell and wheat germ extracts. Plant Mol Biol 16: 865–875 (1991).

    PubMed  Google Scholar 

  38. Starr DB, Hoopes BC, Hawley DK: DNAbending is an important component of site-specific recognition by the TATAbinding protein. J Mol Biol 250: 434–446 (1995).

    PubMed  Google Scholar 

  39. Struhl K: Duality of TBP, the universal transcription factor. Science 263: 1103–1104 (1994).

    PubMed  Google Scholar 

  40. Taneja R, Gopalkrishnan R, Gopinathan KP: Regulation of glycine transfer RNA gene expression in the posterior silk glands of the silkworm Bombyx mori. Proc Natl Acad Sci USA 89: 1070–1074 (1992).

    PubMed  Google Scholar 

  41. Tapping RI, Syroid DE, Bilan PT, Capone JP: The 50 flanking sequence negatively modulate the in vivo expression and in vitro transcription of a human tRNA gene. Nucl Acids Res 21: 4476–4482 (1993).

    PubMed  Google Scholar 

  42. Tapping RI, Syroid DE, Capone JP: Upstream interactions of functional mammalian tRNA gene transcription complexes probed using a heterologous DNA-binding protein. J Biol Chem 269: 21812–21819 (1994).

    PubMed  Google Scholar 

  43. Teichmann T, Urban C, Beier H: The tRNASer isoacceptors and their genes in Nicotiana rustica: genome organization, expression in vitro and sequence analyses. Plant Mol Biol 24: 889–901 (1994).

    PubMed  Google Scholar 

  44. Ulmasov B, Folk W: Analysis of the role of 5′and 3′flanking sequence elements upon in vivo expression of the plant tRNATrp genes. Plant Cell 7: 1723–1734 (1995).

    PubMed  Google Scholar 

  45. Wang Y, Jensen RC, Stumph WE: Role of TATAbox sequence and orientation in determining RNA polymerase II/III transcription specificity. Nucl Acids Res 24: 3100–3106 (1996).

    PubMed  Google Scholar 

  46. Wang Y, Stumph WE: RNA polymerase II/III transcription specificity determined by TATA box orientation. Proc Natl Acad Sci USA 92: 8606–8610 (1995).

    PubMed  Google Scholar 

  47. Willis IM: RNA polymerase III. Eur J Biochem 212: 1–11 (1993).

    PubMed  Google Scholar 

  48. Wobbe CR, Struhl K: Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Mol Cell Biol 10: 3859–3867 (1990).

    PubMed  Google Scholar 

  49. Wood KV: Novel assay of firefly luciferase providing greater sensitivity and ease of use. J Cell Biol 111: 380A (1990).

    Google Scholar 

  50. Young LS, Takahashi N, Sprague KU: Upstream sequences confer distinctive transcriptional properties on genes encoding silkgland-specific tRNAAla. Proc Natl Acad Sci USA 83: 374–378 (1986).

    PubMed  Google Scholar 

  51. Zecherle GN, Whelen S, Hall BD: Purines are required at the 5′ends of newly initiated RNAs for optimal RNA polymerase III gene expression. Mol Cell Biol 16: 5801–5810 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choisne, N., Carneiro, V.T., Pelletier, G. et al. Implication of 5′-flanking sequence elements in expression of a plant tRNALeugene. Plant Mol Biol 36, 113–123 (1998). https://doi.org/10.1023/A:1005988004924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005988004924

Navigation