Skip to main content
Log in

Promoter recognition by a cyanobacterial RNA polymerase: in vitro studies with the Calothrix sp. PCC 7601 transcriptional factors RcaA and RcaD

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

To study the transcriptional apparatus and the mechanisms that control gene expression in cyanobacteria, the RNA polymerase was purified from the filamentous Calothrix sp. PCC 7601 and used in in vitro transcription assays. Conditions required for specific transcription initiation to occur were analyzed with the eleven Calothrix PCC 7601 genes for which the 5′ ends have been mapped. Most of the transcripts directly obtained did not have the expected size, providing a test for looking at specific transcription factors. Addition of RcaA, a protein that binds to the promoter region of the phycobiliprotein cpeBA operon, restored accurate initiation of transcription in the in vitro system for three phycobiliprotein promoters. RcaA thus is a transcription factor that allows to mimick in vivo transcription. In parallel, the functional properties of the Escherichia coli and cyanobacterial RNA polymerases were compared. The enteric enzyme could not precisely initiate transcription at the promoter of a phycobiliprotein gene and, reciprocally, the cyanobacterial RNA polymerase could initiate transcription at PlacUV5, but not from wild-type Plac promoters. The different behaviours of the enzymes are discussed in the light of the structural differences that exist between subunits of the RNA polymerases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhya S: Multipartite genetic control elements: communication by DNA loop. Annu Rev Genet 23: 227–250 (1989).

    Google Scholar 

  2. Brahamsha B, Haselkorn R: Isolation and characterization of the gene encoding the principal sigma factor of the vegetative cell RNA polymerase from the cyanobacterium Anabaena sp. strain PCC 7120. J. Bact 173: 2442–2450 (1991).

    Google Scholar 

  3. Brahamsha B, Haselkorn R: Identification of multiple RNA polymerase sigma factor homologs in the cyanobacterium Anabaena sp. strain PCC 7120: cloning, expression, and inactivation of the sigB and sigC genes. J Bact 174: 7273–7282 (1992).

    Google Scholar 

  4. Caslake LF, Bryant DA The sigA gene encoding the principal σ factor of RNA polymerase from the marine cyanobacterium Synechococcus sp. strain PCC 7002: cloning and characterization. Microbiology 142: 347–357 (1996).

    Google Scholar 

  5. Conley PB, Lemaux PG, Grossman A: Molecular characterization and evolution of sequences encoding lightharvesting components in the chromatically adapting cyanobacterium Fremyella diplosiphon. J Mol Biol 199: 447–465 (1988).

    Google Scholar 

  6. Csiszàr K, Houmard J, Damerval T, Tandeau de Marsac N: Transcriptional analysis of the cyanobacterial gvpABC operon in differentiated cells: occurrence of an antisense RNA com659 plementary to three overlapping transcripts. Gene 60: 29–37 (1987).

    Google Scholar 

  7. Curtis SE, Martin JA: The transcription apparatus and the regulation of transcription initiation. In: Bryant DA (ed) The Molecular Biology of the Cyanobacteria, pp. 613–639. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  8. Elhai J: Strong and regulated promoters in the cyanobacterium Anabaena PCC 7120. FEMS Microbiol Lett 114: 179–184 (1993).

    Google Scholar 

  9. Elliott T, Geiduschek EP: Defining a bacteriophage T4 late promoter: absence of a ‘–35’ region. Cell 36: 211–219 (1984).

    Google Scholar 

  10. Federspiel NA, Grossman AR: Characterization of the lightregulated operon encoding the phycoerthrinassociated linker proteins from the cyanobacterium Fremyella diplosiphon. J Bact 172: 4072–4081 (1990).

    Google Scholar 

  11. Golden SS: Light responsive gene expression in cyanobacteria. J Bact 177: 1651–1654 (1995).

    Google Scholar 

  12. Gralla JD: Transcriptional control: lessons from an E. coli promoter data base. Cell 66: 415–418 (1991).

    Google Scholar 

  13. Houmard J: Gene transcription in filamentous cyanobacteria. Microbiology 140: 433–441 (1994).

    Google Scholar 

  14. Houmard J, Capuano V, Coursin T, Tandeau de Marsac N: Genes encoding core components of the phycobilisome in the cyanobacterium Calothrix sp. strain PCC 7601: occurrence of a multigene family. J Bact 170: 5512–5521 (1988a).

    Google Scholar 

  15. Houmard J, Capuano V, Coursin T, Tandeau de Marsac N: Isolation and molecular characterization of the gene encoding allophycocyanin B, a terminal energy acceptor in cyanobacterial phycobilisomes. Mol Microbiol 2: 101–107 (1988b).

    Google Scholar 

  16. Houmard J, Capuano V, Colombano MV, Coursin T, Tandeau de Marsac N: Molecular characterization of the terminal energy acceptor of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 87: 2152–2156 (1990).

    Google Scholar 

  17. Houmard J, Schyns G, Jia L, Sobczyk A, Liotenberg S, Campbell D, Tandeau de Marsac N: Molecular factors that control gene expression in a filamentous cyanobacterium. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol. III, pp. 433–438. Kluwer Academic Publishers, Dordrecht (1995).

    Google Scholar 

  18. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S: Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential proteincoding regions. DNA Res 3: 109–136 (1996).

    Google Scholar 

  19. Kolb A, Busby S, Buc H, Garges S, Adhya S: Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62: 749–795 (1993).

    Google Scholar 

  20. Kustu S, North AK, Weiss DS: Prokaryotic transcriptional enhancers and enhancerbinding proteins. Trends Biochem Sci 16: 397–402 (1991).

    Google Scholar 

  21. Marraccini P, Cassier-Chauvat C, Bulteau S, Chavez S, Chauvat F: Lightregulated promoters from Synechocystis PCC6803 share a consensus motif involved in photoregulation. Mol Microbiol 12: 1005–1012 (1994).

    Google Scholar 

  22. Richet E, Raibaud O: Supercoiling is essential for the formation and stability of the initiation complex at the divergent malEp and malKp promoters. J Mol Biol 218: 529–542 (1991).

    Google Scholar 

  23. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61 (1979).

    Google Scholar 

  24. Schmidt Goff CM, Federspiel NA: In vivo and in vitro footprinting of a lightregulated promoter in the cyanobacterium Fremyella diplosiphon. J Bact 175: 1806–1813 (1993).

    Google Scholar 

  25. Schneider GJ, Haselkorn R: RNA polymerase subunit homology among cyanobacteria, other eubacteria, and archaebacteria. J Bact 170: 4136–4140 (1988a).

    Google Scholar 

  26. Schneider GJ, Haselkorn R: Characterization of two early promoters of cyanophage N1. Virology 167: 150–155 (1988b).

    Google Scholar 

  27. Schneider GJ, Lang JD, Haselkorn R: Promoter recognition by the RNA polymerase from vegetative cells of the cyanobacterium Anabaena 7120. Gene 10: 51–60 (1991).

    Google Scholar 

  28. Schyns G, Sobczyk A, Tandeau de Marsac N, Houmard J: Specific initiation of transcription at a cyanobacterial promoter with RNA polymerase purified from Calothrix sp. PCC 7601. Mol Microbiol 13: 887–896 (1994).

    Google Scholar 

  29. Severinov K, Mustaev A, Kukarin A, Muzzin O, Bass I, Darst SA, Goldfarb A: Structural modules of the large subunits of RNA polymerase J Biol Chem 271: 27969–27974 (1996).

    Google Scholar 

  30. Sobczyk A, Schyns G, Tandeau de Marsac N, Houmard J: Transduction of the light signal during complementary chromatic adaptation in the cyanobacterium Calothrix sp. PCC 7601: DNAbinding proteins and modulation by phosphorylation. EMBO J 12: 997–1004 (1993).

    Google Scholar 

  31. Sobczyk A, Bely A, Tandeau de Marsac N, Houmard J: A phosphorylated DNAbinding protein is specific for the redlight signal during complementary chromatic adaptation in cyanobacteria. Mol Microbiol 13: 875–885 (1994).

    Google Scholar 

  32. Tanaka K, Masuda S, Takahashi H: Multiple rpoDrelated genes of cyanobacteria. Biosci Biotech Biochem 56: 1113–1117 (1992).

    Google Scholar 

  33. Tandeau de Marsac N., Houmard J: Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. FEMS Microbiol Rev 104: 119–190 (1993).

    Google Scholar 

  34. Tandeau de Marsac N, Mazel D, Damerval T, Guglielmi G, Capuano V, Houmard J: Photoregulation of gene expression in the filamentous cyanobacterium Calothrix sp. PCC7601: lightharvesting complexes and cell differentiation. Photosynth Res 18:99–132 (1988).

    Google Scholar 

  35. Wray W, Boulikas T, Wray VP, Hancock R: Silver staining of proteins in polyacrylamide gels. Anal Biochem 118: 197–203 (1981).

    Google Scholar 

  36. Wyman M, Fay P: Acclimation to the natural light climate. In: Fay P, van Baalen C (eds) The Cyanobacteria, pp. 347–376. Elsevier, Amsterdam (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schyns, G., Jia, L., Coursin, T. et al. Promoter recognition by a cyanobacterial RNA polymerase: in vitro studies with the Calothrix sp. PCC 7601 transcriptional factors RcaA and RcaD. Plant Mol Biol 36, 649–659 (1998). https://doi.org/10.1023/A:1005983320006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005983320006

Navigation