Skip to main content
Log in

A Three-Dimensional Global Model Study of Carbonyl Sulfide in the Troposphere and the Lower Stratosphere

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Global distributions of carbonyl sulfide and carbon disulfide have been calculated with a three-dimensional global model of the atmospheric general circulation (ECHAM). The model calculates a global sink strength for carbonyl sulfide of 0.3 Tg S yr-1, with vegetation uptake being the largest sink. With this sink strength, the sources have to be close to the lower limit of the present estimate in the literature. The calculated mixing ratios are higher in the Southern Hemisphere than in the Northern Hemisphere. This interhemispheric gradient is the opposite of what is observed demonstrating that the present knowledge of the distribution of sinks and sources is not fully adequate. The model calculations support the idea that the open oceans could act as a net sink of carbonyl sulfide. The calculated stratospheric photolysis of carbonyl sulfide constitutes about 4% of the total sink of carbonyl sulfide. A stratospheric production of sulfate from carbonyl sulfide of 0.013 Tg S yr-1 is obtained, which is 3 to 12 times less than what is needed to maintain the stratospheric sulfate aerosol layer. Although these results are associated with uncertainties, due to the low upper boundary and coarse vertical resolution of the model, they support recent findings of a low stratospheric production of sulfate from carbonyl sulfide. Instead, sulfur dioxide transported from the troposphere is calculated to be the most important precursor for the stratospheric sulfate aerosol layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, M. O., 1986: The ocean as a source of atmospheric sulfur compounds, in P. Buat-Menard (ed.), The Role of Air-Sea Exchange in Geochemical Cycling, D. Reidel, Dordrecht, pp. 331–362.

    Google Scholar 

  • Andreae, M. O., Berresheim, H., Bingemer, H., Jacob, D. J., Lewis, B. L., Li, S.M., and Talbot, R. W., 1990: The atmospheric sulfur cycle over the Amazon Basin, 2. Wet season, J. Geophys. Res. 95, 16813–16824.

    Google Scholar 

  • Andreae, M. O. and Ferek, R. R., 1992: Photochemical production of carbonyl sulfide in seawater and its emission to the atmosphere, Glob. Biogeochem. Cycles 6, 175–183.

    Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F. Jr., Kerr, J. A., and Troe, J., 1992: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV, Atmos. Environ. 26A, 1187–1230.

    Google Scholar 

  • Bandy, A. R., Thornton, D. C., Scott, D. L., Lalevic, M., Lewin, E. E., and Driedger, A. R., 1992: A time series for carbonyl sulfide in the Northern Hemisphere, J. Atmos. Chem. 14, 527–534.

    Google Scholar 

  • Bandy, A. R., Thornton, D. C., and Johnson, J. E., 1993: Carbon disulfide measurements in the atmosphere of the western North Atlantic and the northwestern South Atlantic oceans, J. Geophys. Res. 98, 23449–23457.

    Google Scholar 

  • Bingemer, H. G., Bürgermeister, S., Zimmermann, R. L., and Georgii, H.W., 1990: Atmospheric OCS: Evidence for a contribution of anthropogenic sources? J. Geophys. Res. 95, 20617–20622.

    Google Scholar 

  • Brühl, C. and Crutzen, P. J., 1993: MPIC two dimensional model, in M. Prather and E. Remsberg (eds), The Atmospheric Effects of Stratospheric Aircraft: Report of the 1992 Models and Measurements Workshop, NASA Ref. Pub. 1292, Vol. I, Washington, D. C., pp. 103–104.

  • Chin, M. and Davis, D. D., 1993: Global sources and sinks of OCS and CS2 and their distributions, Glob. Biogeochem. Cycles 7, 321–337.

    Google Scholar 

  • Chin, M. and Davis, D. D., 1995: A reanalysis of carbonyl sulfide as a source of stratospheric background aerosol, J. Geophys. Res. 100, 8993–9005.

    Google Scholar 

  • Cooper, D. J. and Saltzman, E. S., 1991: Measurements of atmospheric dimethyl sulfide and carbon disulfide in the Western Atlantic boundary layer, J. Atmos. Chem. 12, 153–168.

    Google Scholar 

  • Crutzen, P. J., 1976: The possible importance of CSO for the sulfate layer of the stratosphere, Geophys. Res. Lett. 3, 73–76.

    Google Scholar 

  • Crutzen, P. J. and Schmailzl, U., 1983: Chemical budgets of the stratosphere, Planet. Space Sci. 31, 1009–1032.

    Google Scholar 

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravinshakara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12, JPL Publication 974, Jet Propulsion Laboratory, Pasadena, Calif.

    Google Scholar 

  • Dentener, F. and Crutzen, P., 1993: Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3 and OH, J. Geophys. Res. 98, 7149–7163.

    Google Scholar 

  • Engel, A. and Schmidt, U., 1994: Vertical profile measurements of carbonylsulfide in the stratosphere, Geophys. Res. Lett. 21, 2219–2222.

    Google Scholar 

  • Erickson, D. J. and Eaton, B. E., 1993: Global biogeochemical cycling estimates with CZCS satellite data and general circulation models, Geophys. Res. Lett. 20, 683–686.

    Google Scholar 

  • Feichter, J., Kjellström, E., Rodhe, H., Dentener, F., Lelieveld, J., and Roelofs, G.J., 1996: Simulation of the tropospheric sulfur cycle in a global climate model, Atmos. Environ. 30, 1693–1707.

    Google Scholar 

  • Gidel, L., Crutzen, P., and Fishman, J., 1983. A two-dimensional photochemical model of the atmosphere 1: Chlorocarbon emissions and their effect on stratospheric ozone, J. Geophys. Res. 88, 6622–6640.

    Google Scholar 

  • Goldan, P. D., Fall, R., Kuster, W. C., and Fehsenfeld, F. C., 1988: Uptake of COS by growing vegetation: A major tropospheric sink, J. Geophys. Res. 93, 14186–14192.

    Google Scholar 

  • Golombek, A. and Prinn, R., 1993. A global three-dimensional model of the stratospheric sulfuric acid layer, J. Atmos. Chem. 16, 179–199.

    Google Scholar 

  • Gries, C., Nash III, T. H., and Kesselmeier, J., 1994: Exchange of reduced sulfur gases between lichens and the atmosphere, Biogeochemistry 26, 25–39.

    Google Scholar 

  • Hao, W. M., Liu, M. H., and Crutzen, P. J., 1990: Estimates of annual and regional releases of CO2and other trace gases to the atmosphere from fires in the tropics, based on the FAO statistics for the period 1975–1980, in J. G. Goldammer (ed.), Fire in the Tropical Biota, Ecol. Stud. 84, Springer, New York, pp. 440–462.

    Google Scholar 

  • Harnisch, J., Borchers, R., Fabian, P., and Kourtidis, K., 1995: Aluminium production as a source of atmospheric carbonyl sulfide (COS), Env. Sci. Pol. Res. 2, 229–232.

    Google Scholar 

  • Hofmann, D. J., 1990. Increase in the stratospheric background sulfuric acid aerosol mass in the past 10 years, Science 248, 996–1000.

    Google Scholar 

  • Hynes, A. J., Wine, P. H., and Semmes, D. J., 1986: Kinetics and mechanisms of OH reactions with organic sulfides, J. Phys. Chem. 90, 4148–4156.

    Google Scholar 

  • Hynes, A. J., Wine, P. H., and Nikovitch, J. M., 1988: Kinetics and mechanism of the reaction of OH with CS2 under atmospheric conditions, J. Phys. Chem. 3846–3852.

  • Johnson, J. E., 1981. The lifetime of carbonyl sulfide in the troposphere, Geophys. Res. Lett. 6, 938–940.

    Google Scholar 

  • Johnson, J. E. and Harrison, H., 1986: Carbonyl sulfide concentrations in the surface waters and above the Pacific Ocean, J. Geophys. Res. 91, 7883–7888.

    Google Scholar 

  • Johnson, J. E., Bandy, A. R., Thornton, D. C., and Bates, T. S., 1993: Measurements of atmospheric carbonyl sulfide during the NASA chemical instrument test and evaluation project: Implications for the global COS budget, J. Geophys. Res. 98, 23443–23448.

    Google Scholar 

  • Kent, G. S., Wang, P.H., McCormick, M. P., and Skeens, K. M., 1995. Multilayer stratospheric aerosol and gas experiment II measurements of upper tropospheric aerosol characteristics, J. Geophys. Res. 100, 13875–13899.

    Google Scholar 

  • Kesselmeier, J. and Merck, L., 1993: Exchange of carbonyl sulfide (COS) between agricultural plants and the atmosphere: Studies on the deposition of COS to peas, corn and rapeseed, Biogeochemistry 23, 47–59.

    Google Scholar 

  • Khalil, M. A. K. and Rasmussen, R. A., 1984: Global sources, lifetimes and mass balances of carbonyl sulfide (OCS) and carbon disulfide (CS2) in the earths atmosphere, Atmos. Environ. 18, 1805–1813.

    Google Scholar 

  • Kley, D., Crutzen, P. J., Smit, H. G. J., Vömel, H., Oltmans, S. J., Grassl, H., and Ramanathan, V., 1996: Observations of near-zero ozone concentrations over the convective Pacific: Effects on air chemistry, Science 274, 230–233.

    Google Scholar 

  • Kim, K.H. and Andreae, M. O., 1987: Carbon disulfide in seawater and the marine atmosphere over the north Atlantic, J. Geophys. Res. 92, 14733–14738.

    Google Scholar 

  • Knorr, W. and Heimann, M., 1994: Sensitivity study of land biosphere CO2 exchange through an atmospheric tracer transport model using satellite-derived vegetation index data. Max-Planck-Institute für Meteorologie. Report No. 127.

  • Lehmann, S. and Conrad, R., 1996: Characteristics of turnover of carbonyl sulfide in four different soils, J. Atmos. Chem. 23, 193–207.

    Google Scholar 

  • Liss, P. S. and Merlivat, L., 1986: Airsea gas exchange rates: Introduction and synthesis, in P. Buat-Menard (ed.), The Role of Air-Sea Exchange in Geochemical Cycling, D. Reidel, Dordrecht, pp. 113–127.

    Google Scholar 

  • Lovejoy, E. R., Murrells, T. P., Ravishankara, A. R., and Howard, C. J., 1990: Oxidation of CS2 by reaction with OH. 2. Yields of HO2 and SO2 in oxygen, J. Phys. Chem. 94, 2386–2393.

    Google Scholar 

  • Maroulis, P. J., and Bandy, A. R., 1980: Measurements of atmospheric concentrations of CS2 in the eastern United States, Geophys. Res. Lett. 9, 681–684.

    Google Scholar 

  • Maroulis, P. J., Torres, A. L., and Bandy, A. R., 1977: Atmospheric concentrations of carbonyl sulfide in the southwestern and eastern United States, Geophys. Res. Lett. 4, 510–512.

    Google Scholar 

  • Mihalopoulos, N., Bonsang, B., Nguyen, B. C., Kanakidou, M., and Belviso, S., 1989: Field observations of carbonyl sulfide deficit near the ground. Possible implication of vegetation, Atmos. Environ. 23, 2159–2166.

    Google Scholar 

  • Mihalopoulos, N., Putaud, J. P., Nguyen, B.C., and Belviso, S., 1991: Annual variation of atmospheric carbonyl sulfide in the marine atmosphere in the southern Indian Ocean, J. Atmos. Chem. 13, 73–82.

    Google Scholar 

  • Molina, L. T., Lamb, J. J., and Molina, M. J., 1981: Temperature dependent UV absorption cross-sections for carbonyl sulfide, Geophys. Res. Lett. 8, 1008–1011.

    Google Scholar 

  • Nguyen, B. C., Mihalopoulos, N., and Putaud, J.P., 1994: Rice straw burning in Southeast Asia as a source of CO and COS to the atmosphere, J. Geophys. Res. 99, 16435–16439.

    Google Scholar 

  • Pham, M., Müller, J.F. M., Brasseur, G. P., Granier, C. and Megie, G. M., 1995: A three-dimensional study of the tropospheric sulfur cycle, J. Geophys. Res. 100, 26061–26092.

    Google Scholar 

  • Pinnick, R. G., Rosen, J. M., and Hofmann, D. J., 1976: Stratospheric aerosol measurements III: Optical model calculations, J. Atmos. Sci. 33, 304–314.

    Google Scholar 

  • Pos, W. H. and Berresheim, H., 1993: Automotive tire wear as a source for atmospheric OCS and CS2, Geophys. Res. Lett. 20, 815–817.

    Google Scholar 

  • Protoschill-Krebs, G., Wilhelm, C., and Kesselmeier, J., 1996: Consumption of carbonyl sulfide (COS) by higher plant carbonic anhydrase (CA), Atmos. Environ. 30, 3151–3156.

    Google Scholar 

  • Pruppacher, H. R. and Klett, J. D., 1980: Microphysics of Clouds and Precipitation, D. Reidel, Dordrecht, 714 pp.

    Google Scholar 

  • Rasch, P. and Williamson, D., 1990: Computational aspects of moisture transport in global models of the atmosphere, Q. J. R. Met. Soc. 116, 1071–1090.

    Google Scholar 

  • Rasmussen, R. A., Khalil, M. A. K., and Hoyt, S. D., 1982: Natural and anthropogenic trace gases in the southern hemisphere, Geophys. Res. Lett. 9, 704–707.

    Google Scholar 

  • Rinsland, C. P., Zander, R., Mahieu, E., Demoulin, P., Goldman, A., Ehhalt, D. H., and Rudolph, J.: 1992, Ground-based infrared measurements of carbonyl sulfide total column abundance: Long-term trends and variability, J. Geophys. Res. 97, 5995–6002.

    Google Scholar 

  • Rinsland, C. P., Mahieu, E., Zander, R., Gunson, M. R., Salawitch, R. J., Chang, A. Y., Goldman, A., Abrams, M. C., Newchurch, M. J., and Irion, F. W., 1996: Trends of OCS, HCN, SF6, CHClF2, (HCFC-22) in the lower stratosphere from 1985 and 1994 atmospheric trace molecule spectroscopy experiment measurements near 30°N latitude, Geophys. Res. Lett. 23, 2349–2352.

    Google Scholar 

  • Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M., Kirk, E., Lunkeit, F., Ponater, M., Rockel, B., Sausen, R., Schlese, U., Schubert, S., and Windelband, M., 1992: Simulation of the Present-Day Climate with the ECHAM Model: Impact of Model Physics and Resolution, Report No. 93, Max-Planck-Institute for Meteorology, Hamburg, Germany.

    Google Scholar 

  • Roelofs, G.J. and Lelieveld, J., 1995: Distribution and budget of O3 in the troposphere calculated with a chemistry-general circulation model, J. Geophys. Res. 100, 20983–20998.

    Google Scholar 

  • Sandalls, F. J. and Penkett, S. A., 1977: Measurements of carbonyl sulphide and carbon disulphide in the atmosphere, Atmos. Environ. 11, 197–199.

    Google Scholar 

  • Spiro, P. A., Jacob, D. J., and Logan, J. A., 1992: Global inventory of sulfur emissions with a 1° x 1° resolution, J. Geophys. Res. 97, 6023–6036.

    Google Scholar 

  • Staubes, R. and Georgii, H.W., 1993: Biogenic sulfur compounds in seawater and the atmosphere of the Antarctic region, Tellus 45B, 127–137.

    Google Scholar 

  • Sze, N. D. and Ko, M. K. W., 1980: Photochemistry of COS, CS2, CH3 SCH3 and H2S, Atmos. Environ. 14, 1223–1239.

    Google Scholar 

  • Thomason, L.W., Kent, G. S., Trepte, C. R., and Poole, L. R., 1997: A comparison of the stratospheric aerosol background periods of 1979 and 1989–1991, J. Geophys. Res. 102, 3611–3616.

    Google Scholar 

  • Thornton, D. C., Bandy, A. R., Beltz, N., Driedger III, A. R., and Ferek, R., 1993: Advection of sulfur dioxide over the Western Atlantic Ocean during CITE 3, J. Geophys. Res. 98, 23459–23467.

    Google Scholar 

  • Thornton, D. C., Bandy, A. R., and Blomquist, B. W., 1996: Impact of anthropogenic and biogenic sources and sinks on carbonyl sulfide in the north pacific troposphere, J. Geophys. Res. 101, 1873–1881.

    Google Scholar 

  • Torres, A. L., Maroulis, P. J., Goldberg, A. B. and Bandy, A. R., 1980: Atmospheric OCS measurements on project Gametag, J. Geophys. Res. 85, 7357–7360.

    Google Scholar 

  • Tucker, B. J., Marioulis, P. J., and Bandy, A. R., 1985: Free tropospheric measurements of CS2 over a 45°N to 45°S latitude range, Geophys. Res. Lett. 12, 9–11.

    Google Scholar 

  • Turco, R. P. and Whitten, R. C., 1978: A note on the diurnal averaging of aeronomical models, J. of Atm. and Terr. Phys. 40, 13–20.

    Google Scholar 

  • Turco, R. P., Whitten, R. C., Toon, O. B., Pollack, J. B., and Hamill, P., 1980: OCS, stratospheric aerosols and climate, Nature 283, 283–286.

    Google Scholar 

  • Turco, R. P., Whitten, R. C., and Toon, O. B., 1982: Stratospheric aerosols: observations and theory, Rev. Geophys. Space Phys. 20, 233–279.

    Google Scholar 

  • Ulshöfer, V. S., Uher, G. and Andreae, M. O., 1995: Evidence for a winter sink of atmospheric carbonyl sulfide in the northeast Atlantic Ocean, Geophys. Res. Lett. 22, 2601–2604.

    Google Scholar 

  • Weisenstein, D. K., Yue, G. K., Ko, M. K. W., Sze, N.D., Rodriguez, J. M., and Scott, C. J., 1997: A two-dimensional model of sulfur species and aerosols, J. Geophys. Res., 102, 13019–13035.

    Google Scholar 

  • Weiss, P. S., Johnson, J. E., Gammon, R. H., and Bates, T. S., 1995. Reevaluation of the open ocean source of carbonyl sulfide to the atmosphere, J. Geophys. Res. 100, 23083–23092.

    Google Scholar 

  • Wilson, J. C., Stoltzenburg, M. R., Clark, W. E., Loewenstein, M., Ferry, G. V., Chan, K. R. and Kelly, K. K., 1992: Stratospheric sulfate aerosol in and near the Northern Hemisphere polar vortex: The morphology of the sulfate layer, multimodal size distributions, and the effect of denitrification, J. Geophys. Res. 97, 7997–8013.

    Google Scholar 

  • World Meteorological Organization (WMO), 1986: Atmospheric Ozone 1985: Global Research and Monitoring Report, Report No. 16.

  • Wolz, G. and Georgii, H.-W., 1996: Large scale distribution of sulfur dioxide results from the TROPOZ II flights, Q. J. Hungarian Meteorol. Serv. 100, 23–41.

    Google Scholar 

  • Zhao, Z., Stickel, R. E., and Wine, P. H., 1995: Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS), Geophys. Res. Lett. 22, 615–618.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kjellström, E. A Three-Dimensional Global Model Study of Carbonyl Sulfide in the Troposphere and the Lower Stratosphere. Journal of Atmospheric Chemistry 29, 151–177 (1998). https://doi.org/10.1023/A:1005976511096

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005976511096

Navigation