Skip to main content
Log in

Three cis-elements required for rice α-amylase Amy3D expression during sugar starvation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Expression of α-amylase genes during seedling development plays a key role in production of sugar from the starch stored in the cereal seed. Rice α-amylase Amy3D promoter/GUS constructs in transgenic rice cell lines were studied to identify cis elements in the promoter of this metabolite-regulated gene. Three sequences having the greatest effects on Amy3D gene expression included the amylase element (TATCCAT), the CGACG element, and a G box-related element (CTACGTGGCCA). These promoter cis elements are needed for high-level expression of Amy3D under conditions of sugar starvation. The involvement of G box cis-elements in environmental stress responses suggest a link between the nutrient stress and the environmental stress responses of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck E, Ziegler P: Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40: 95–117 (1989).

    Article  Google Scholar 

  2. Bronstein I, Fortin JJ, Voyta JC, Juo R, Edwards B, Olsen CEM, Lijam N, Kricka LJ: Chemiluminescent reporter gene assays: Sensitive detection of the GUS and SEAP gene products. Bio-Techniques 17: 172–178 (1994).

    Google Scholar 

  3. Chandler PM, Robertson M: Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 45: 113–141 (1994).

    Article  Google Scholar 

  4. DeVetten NC, Ferl RJ: Transcriptional regulation of environmentally inducible genes in plants by an evolutionary conserved family of G-box binding factors. Int J Biochem 26: 1055–1068 (1994).

    PubMed  Google Scholar 

  5. deWet JR, Wood KV, DeLuca M, Helinski DR, Subramani S: Firefly luciferase gene: structure and expression inmammalian cells. Mol Cell Biol 7: 725–737 (1987).

    PubMed  Google Scholar 

  6. Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM: Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/technology 8: 833–839 (1990).

    Article  PubMed  Google Scholar 

  7. Huang N, Chandler J, Thomas BR, Rodriguez RL: Metabolic regulation of α-amylase gene expression in rice cell cultures. Plant Mol Biol 23: 737–747 (1993).

    Article  PubMed  Google Scholar 

  8. Huang N, Koizumi N, Reinl S, Rodriguez RL: Structural organization and differential expression of rice α-amylase genes. Nucl Acids Res 18: 7007–7014 (1990).

    PubMed  Google Scholar 

  9. Huang N, Sutliff TD, Litts JC, Rodriguez RL: Classification and characterization of the rice α-amylase multigene family. Plant Mol Biol 14: 655–668 (1990).

    PubMed  Google Scholar 

  10. Huttly AK, Baulcombe DC: A wheat α-Amy2 promoter is regulated by gibberellin in transformed oat aleurone protoplasts. EMBO J 8: 1907–1913 (1989).

    Google Scholar 

  11. Huttly AK, Martienssen RA, Baulcombe DC: Sequence heterogeneity and differential expression of the α-Amy2 gene family in wheat. Mol Gen Genet 214: 232–240 (1988).

    PubMed  Google Scholar 

  12. Itoh K, Yamaguchi J, Huang N, Rodriguez RL, Akazawa T, Shimamoto K: Developmental and hormonal regulation of rice α-amylase (RAmy1A)-gusA fusion genes in transgenic rice seeds. Plant Physiol 107: 25–31 (1995).

    PubMed  Google Scholar 

  13. Izawa T, Foster R, Chua NH: Plant bZIP protein DNA binding specificity. J Mol Biol 230: 1131–1144 (1993).

    Article  PubMed  Google Scholar 

  14. Jacobsen JV, Gubler F, Chandler PM: Gibberellin action in germinated cereal grains. In: Davies PJ (ed) Plant Hormones, pp. 246–271. Kluwer Academic Publishers, Dordrecht, Netherlands (1995).

    Google Scholar 

  15. Jang J-C, Leon P, Zhou L, Sheen J: Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5–19 (1997).

    Article  PubMed  Google Scholar 

  16. Jang J-C, Sheen J: Sugar sensing in higher plants. Plant Cell 6: 1665–1679 (1994).

    Article  PubMed  Google Scholar 

  17. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: α-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    PubMed  Google Scholar 

  18. Kao KN: Chromosomal behaviour in somatic hybrids of soybean-Nicotiana glauca. Mol Gen Genet 150: 225–230 (1977).

    Google Scholar 

  19. Karrer EE, Litts JC, Rodriguez RL: Differential expression of α-amylase genes in germinating rice and barley seeds. Plant Mol Biol 16: 797–805 (1991).

    Article  PubMed  Google Scholar 

  20. Karrer EE, Rodriguez RL: Metabolic regulation of rice α-amylase and sucrose synthase genes in planta. Plant J 2: 517–523 (1992).

    Article  PubMed  Google Scholar 

  21. Koch KE: Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 509–540 (1996).

    Article  PubMed  Google Scholar 

  22. Kunkel TA, Roberts JD, Zakour RA: Rapid and efficient site-specific mutagenesis without phenotypic selection. Meth Enzymol 154: 367–382 (1987).

    PubMed  Google Scholar 

  23. Lee B, Martin P, Bangerth F: The effect of sucrose on the levels of abscisic acid, indoleacetic acid and zeatin zeatin riboside in wheat ears growing in liquid culture. Physiol Plant 77: 73–80 (1989).

    Google Scholar 

  24. Lee L, Schroll RE, Grimes HD, Hodges TK: Plant regeneration from indica rice (Oryza sativa L.) protoplasts. Planta 178: 325–333 (1989).

    Google Scholar 

  25. Li L, Qu R, deKochko A, Fauquet C, Beachey RN: An improved rice transformation system using the biolistic method. Plant Cell Rep 12: 250–255 (1993).

    Google Scholar 

  26. Magoulas C, Bally-Cuif L, Loverre-Chyurlia A, Benkel B, Hickey D: A short 52032;-flanking region mediates glucose repression of amylase gene expression in Drosophila melanogaster. Genetics 134: 507–515 (1993).

    PubMed  Google Scholar 

  27. McGarvey P, Kaper JM: Asimple and rapid method for screening transgenic plants using PCR. Biotechniques 11: 428–432 (1991).

    PubMed  Google Scholar 

  28. McKendreeJr WL, Ferl RL: Functional elements of the Arabidopsis Adh promoter include the G-box. Plant Mol Biol 19: 859–862 (1992).

    PubMed  Google Scholar 

  29. Mitsunaga S, Rodriguez RL, Yamaguchi J: Sequence-specific interactions of a nuclear protein factor with the promoter region of a rice gene for alpha-amylase, RAmy3D. Nucl Acids Res 22: 1948–1953 (1994).

    PubMed  Google Scholar 

  30. Nagata O, Takashima T, Tanaka M, Tsukagoshi N: Aspergillus nidulans nuclear proteins bind to a CCAAT element and the adjacent upstream sequence in the promoter region of the starch-inducible Taka-amylase A gene. Mol Gen Genet 237: 251–260 (1993).

    PubMed  Google Scholar 

  31. Naito S, Hirai MY, Inaba-Higano K, Nambara E, Fujiwara T, Hayashi H, Komeda Y, Chino M: Expression of soybean seed storage protein genes in transgenic plants and their response to sulfur nutritional conditions. J Plant Physiol 145: 614–619 (1995).

    Google Scholar 

  32. O'Neill SD, Kumagai MH, Majumdar A, Huang N, Sutliff TD, Rodriguez RL: The α-amylase genes in Oryza sativa: characterization of cDNAclones andmRNAexpression during seed germination. Mol Gen Genet 221: 235–244 (1990).

    Article  PubMed  Google Scholar 

  33. Ono A, Izawa T, Chua NH, Shimamoto K: The rab16b promoter of rice contains two distinct abscisic acid-responsive elements. Plant Physiol 112: 483–491 (1996).

    PubMed  Google Scholar 

  34. Rademacher W, Jung J: Comparative potency of various synthetic plant growth retardants on the elongation of rice seedlings. J Agron Crop Sci 150: 363-371 (1981).

    Google Scholar 

  35. Rao KV, Rathore KS, Hodges TK: Physical, chemical and physiological parameters for electroporation-mediated gene delivery into rice protoplasts. Transgen Res 4: 361–368 (1995).

    Google Scholar 

  36. Rogers JC, Rogers SW: Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. Plant Cell 4: 1443–1451 (1992).

    Article  PubMed  Google Scholar 

  37. Rogers SG, Klee HJ, Horsch RB, Fraley RT: Improved vectors for plant transformation: expression cassette vectors and new selectable markers. Meth Enzymol 153: 253–277 (1987).

    Google Scholar 

  38. Ronne H: Glucose repression in fungi. Trends Genet 11: 12–17 (1995).

    PubMed  Google Scholar 

  39. Salinas J, Oeda K, Chua N-H: Two G-box-related sequences confer different expression patterns in transgenic tobacco. Plant Cell 4: 1485–1493 (1992).

    PubMed  Google Scholar 

  40. Sheen J: Feedback control of gene expression. Photosynth Res 39: 427–438 (1994).

    Google Scholar 

  41. Shen QX, Zhang PN, Ho T-HD: Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell 8: 1107–1119 (1996).

    PubMed  Google Scholar 

  42. Sissons MJ, MacGregor AW: Hydrolysis of barley starch granules by α-glucosidases from malt. J Cereal Sci 19: 161–169 (1994).

    Google Scholar 

  43. Sivamani E, Shen P, Opalka N, Beachy RN, Fauquet CM: Selection of large quantities of embryogenic calli from indica rice seeds for production of fertile transgenic plants using the biolistic method. Plant Cell Rep 15: 322–327 (1996).

    Google Scholar 

  44. Skriver K, Olsen FL, Rogers JC, Mundy J: Cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci USA 88: 7266–7270 (1991).

    PubMed  Google Scholar 

  45. Sun Z, Henson CA: A quantitative assessment of the importance of barley seed α-amylase, debranching enzyme, and aglucosidase in starch degradation. Arch Biochem Biophys 284: 298–305 (1991).

    PubMed  Google Scholar 

  46. Sung HI, Liu LF, Lur HS, Kao CH: Sucrose-starvation-induced changes in polyamine and abscisic acid levels of suspensioncultured rice cells. Bot Bull Acad Sin 36: 47–51 (1995).

    Google Scholar 

  47. Terashima M, Hayashi N, Thomas BR, Rodriguez RL, Katoh S: Kinetic parameters of two rice α-amylase isozymes for oligosaccharide degradation. Plant Sci 116: 9–14 (1996).

    Google Scholar 

  48. Thomas BR, Chandler J, Simmons CR, Huang N, Karrer E, Rodriguez RL: Gene regulation and protein secretion from plant cell cultures: the rice α-amylase system. In: Ryu DDY, Furusaki S (eds) Advances in Plant Biotechnology, pp. 37–55. Elsevier, Amsterdam, (1994).

    Google Scholar 

  49. Thomas BR, Rodriguez RL: Metabolite signals regulate gene expression and source/sink relations in cereal seedlings. Plant Physiol 106: 1235–1239 (1994).

    PubMed  Google Scholar 

  50. Thomas BR, Terashima M, Katoh S, Stoltz T, Rodriguez RL: Metabolic regulation of source-sink relations in cereal seedlings. In: Madore MA, Lucas WJ (eds) Carbon Partitioning and Source-Sink Interactions in Plants, pp. 78–90. American Society of Plant Physiologists, Rockville, MD, (1995).

    Google Scholar 

  51. Thompson JA, Abdullah R, Cocking EC: Protoplast culture of rice (Oryza sativa L.) using media solidified with agarose. Plant Sci 47: 123–133 (1986).

    Article  Google Scholar 

  52. Vaulont S, Kahn A: Transcriptional control of metabolic regulation genes by carbohydrates. FASEB J 8: 28–35 (1994).

    PubMed  Google Scholar 

  53. Williams ME, Foster R, Chua N-H: Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell 4: 485–496 (1992).

    Article  PubMed  Google Scholar 

  54. Witt W, Buchholz A, Sauter JJ: Binding of endoamylase to native starch grains from poplar wood. J Exp Bot 46: 1761–1769 (1995).

    Google Scholar 

  55. Witt W, Sauter JJ: In vitro degradation of starch grains by phosphorylases and amylases from poplar wood. J Plant Physiol 146: 35–40 (1995).

    Google Scholar 

  56. Yu S-M, Tzou W-S, Lo W-S, Kuo Y-H, Lee H-T, Wu R: Regulation of α-amylase-encoding gene expression in germinating seeds and cultured cells of rice. Gene 122: 247–253 (1992).

    Article  PubMed  Google Scholar 

  57. Yu SM, Lee YC, Fang SC, Chan MT, Hwa SF, Liu LF: Sugars act as signal molecules and osmotica to regulate the expression of α-amylase genes and metabolic activities in germinating cereal grains. Plant Mol Biol 30: 1277–1289 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, YS., Karrer, E., Thomas, B. et al. Three cis-elements required for rice α-amylase Amy3D expression during sugar starvation. Plant Mol Biol 36, 331–341 (1998). https://doi.org/10.1023/A:1005956104636

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005956104636

Navigation