Skip to main content
Log in

The 38 kDa chlorophyll a/b protein of the prokaryote Prochlorothrix hollandica is encoded by a divergent pcb gene

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The chlorophyll (Chl) a/b proteins of the photosynthetic prokaryotes appear to have evolved by gene duplication and divergence of the core Chl a antenna family, which also includes CP43 and CP47 and the iron-stress induced Chl a-binding IsiA proteins. We show here that Prochlorothrix hollandica has a cluster of three pcb (prochlorophyte chlorophyll b) genes which are co-transcribed. The major antenna polypeptides of 32 and 38 kDa are encoded by pcbA and pcbC respectively. The pcbC gene is significantly divergent from the other two and may have originated by a gene duplication independent of the one that led to isiA and the other prochlorophyte pcb genes. The distant relatedness of the three prochlorophyte genera implies that not only the ability to make Chl b and use it for light-harvesting arose independently in the three lineages, but also that the pcb genes may have arisen as the result of independent gene duplications in each lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aebersold R, Leavitt J, Hood LE, Kent SBH: Internal amino acid sequence analysis of proteins separated by one or twodimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci USA 184: 6970–6974 (1987).

    Google Scholar 

  2. Bricker TM: The structure and function of CPa1 and CPa2 in photosystem II. Photosyn Res 24: 1–13 (1990).

    Google Scholar 

  3. Bullerjahn GS, Post AF: The prochlorophytes: are they more than just chlorophyll a/bcontaing cyanobacteria? Crit Rev Microbiol 19: 43–59 (1993).

    Google Scholar 

  4. Burnap RL, Troyan T, Sherman LA: The highly abundant chlorophyll-protein complex of iron-deficient Synechococcus sp. PCC7942 (CP43′) is encoded by the isiA gene. Plant Physiol 103: 893–902 (1993).

    Google Scholar 

  5. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159 (1987).

    Google Scholar 

  6. Church GM, Gilbert W: Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995.

  7. Dinkins RD, Bandaranayake H, Baeza L, Griffiths AJF, Green BR: hcf5, a nuclear photosynthetic electron transport mutant of Arabidopsis thaliana with a pleiotropic effect on chloroplast gene expression. Plant Physiol 113: 1023–1031 (1997).

    Google Scholar 

  8. Durnford DG, Aebersold R, Green BR: The fucoxanthinchlorophyll proteins from a chromophyte alga are part of a large multigene family: structural and evolutionary relationships to other light harvesting antennae. Mol Gen Genet 253: 377–386 (1996).

    Google Scholar 

  9. Enami I, Tohri A, Kamo M, Ohta H, Shen JR: Identification of domains on the 43 kDa chlorophyll-carrying protein (CP43) that are shielded from tryptic attack by binding of the extrinsic 33 kDa protein with photosystem II complex. BiochimBiophys Acta 1320: 17–26 (1997). 716

    Google Scholar 

  10. Falk S, Samson G, Bruce D, Huner NPA, Laudenbach DE: Functional analysis of the ironstress induced CP43′ polypeptide of PS II in the cyanobacterium Synechococcus sp. PCC7942. Photosyn Res 45: 51–60 (1995).

    Google Scholar 

  11. Felsenstein J: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 (1985).

    Google Scholar 

  12. Felsenstein J: PHYLIP (phylogeny inference package). University of Washington, Seattle, WA. (1992).

    Google Scholar 

  13. Ferreira F, Straus NA: Iron deprivation in cyanobacteria. J Appl Phycol 6: 199–210 (1994).

    Google Scholar 

  14. Fling SP, Gregerson DS: Peptide and protein molecular weight determination by electrophoresis using a highmolarity Tris buffer system without urea. Anal Biochem 155: 83–88 (1986)

    Google Scholar 

  15. Golden SS, Brusslan J, Haselkorn R: Genetic Engineering of the cyanobacterial chromosome. Meth Enzymol 153: 215–231 (1987).

    Google Scholar 

  16. Green BR, Durnford DG: The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47: 685–714 (1996).

    Google Scholar 

  17. Lee C, Levin A, Branton D: Copper staining: a five minute protein stain for sodium dodecyl sulfatepolyacrylamide gels. Anal Biochem 166: 368–379 (1987).

    Google Scholar 

  18. LaRoche J, van der Staay GWM, Partensky F, Ducret A, Aebersold, R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD, Green BR: Independent evolution of the prochlorophyte and green plant chlorophyll a/b lightharvesting proteins. Proc Natl Acad Sci USA 93: 15244–15248 (1966).

    Google Scholar 

  19. Matthijs HCP, van der Staay GWM, Mur LR: Prochlorophytes: the other cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp. 49–64. Kluwer Academic Publishers, Dordrecht, Netherlands (1995).

    Google Scholar 

  20. Palenik B, Haselkorn R: Multiple evolutionary origins of prochlorophytes, the chlorophyll bcontaining prokaryotes. Nature 355: 265–267 (1992).

    Google Scholar 

  21. Putnam-Evans C, Wu JT, Bricker TM: Site-directed mutagenesis of the CP47 protein of photosystem II: alteration of conserved charged residues which lie within lethal deletions of the large extrinsic loop E. Plant Mol Biol 32: 1191–1195 (1996).

    Google Scholar 

  22. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  23. Schägger H, von Jagow G: Tricinesodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368–379 (1987).

    Google Scholar 

  24. Schuler GD, Altschul SF, Lipman DJ: A work bench for multiple alignment construction and analysis. Proteins Structure Function Genet 9: 180–190 (1991).

    Google Scholar 

  25. Urbach E, Robertson DL, Chisholm SW: Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature 355: 267–270 (1992).

    Google Scholar 

  26. van der Staay GWM, Staehelin LA: Biochemical characterization of protein composition and protein phosphorylation patterns in stacked and unstacked thylakoid membranes of the prochlorophyte Prochlorothrix hollandica. J Biol Chem 269: 24834–24844 (1994).

    Google Scholar 

  27. Wilmotte A: Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed), The Molecular Biology of Cyanobacteria, pp. 1–25. Kluwer Academic Publishers, Dordrecht, Netherlands (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Staay, G.W.M., Yurkova, N. & Green, B.R. The 38 kDa chlorophyll a/b protein of the prokaryote Prochlorothrix hollandica is encoded by a divergent pcb gene. Plant Mol Biol 36, 709–716 (1998). https://doi.org/10.1023/A:1005930210515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005930210515

Navigation