Skip to main content
Log in

High frequency plant regeneration from Eucalyptus globulus Labill. hypocotyls: Ontogenesis and ploidy level of the regenerants

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Up to 70% regenerating hypocotyls provided with 5 to 20 buds were obtained on MS medium containing 0.01 or 1 mg l-1 NAA and 0.2 mg l-1 BA or 0.2 mg l-1 BA and 0.2 mg l-1 TDZ. The ability to regenerate buds was correlated with the presence of oil glands at a stage in germination when oil secretion was not yet occurring. The regeneration of shoot meristems took place from the cells involved in the differentiation of these glands. Such glands could also appear during callus redifferentiation, giving rise to indirect regeneration. Rooting of the regenerants was efficient using a two-step procedure of induction under darkness in the presence of 3 mg l-1 IBA, followed by root development on medium devoid of growth regulators under a 16-h photoperiod, the medium being solidified with Gelrite. Regenerated plants showed no phenotypic alterations. Nuclear DNA contents in mother-plant material and regenerants were analysed using flow cytometry. There was no evidence of polyploidy in any of the samples, indicating the absence of polyploidisation during cell differentiation and under in vitro conditions. No regeneration was obtained from leaf or stem explants from micropropagated plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam S, Chriqui D & Caissard JC (1992) Transformation g´en´etique et r´eg´en´eration de bourgeons transg´eniques chezEucalyptus globulus. AFOCEL 1991, 'Biotechnologies appliqu´ees aux arbres forestiers', Paris (pp 81–110) ISSN 0398-494X

  • Bennett IJ & McComb JA (1982) Propagation of Jarrah (Eucalyptus marginata) by organ and tissue culture. Aust. For. Res. 12: 121–127

    Google Scholar 

  • Bergounioux C, Perennes C, Brown S, Sarda C & Gadal P (1988) Relation between protoplast division, cell-cycle stage and nuclear chromatin structure. Protoplasma 142: 127–136

    Article  CAS  Google Scholar 

  • Bornman CH (1983) Possibilities and constraints in the regeneration of trees from cotyledonary needles of Picea abies in vitro. Physiol. Plant. 57: 5–16

    Article  Google Scholar 

  • Carr DJ & Carr SGM (1970) Oil glands and ducts in Eucalyptus l'H´erit. II. Development and structure of oil glands in the embryo. Aust. J. Bot. 18: 191–212

    Article  Google Scholar 

  • Cheah KT & Cheng TY (1978) Histological analysis of adventitious bud formation in cultured Douglas fir cotyledon. Am. J. Bot. 65:845–849

    Article  Google Scholar 

  • David A, David H & Mateille T (1982) In vitro adventitious budding on Pinus pinaster cotyledons and needles. Physiol. Plant. 56:102–107

    Article  CAS  Google Scholar 

  • Diallo N & Duhoux E (1984) Organogenèse etmultiplication in vitro chez l'Eucalyptus camaldulensis. J. Plant Physiol. 115: 177–182

    CAS  Google Scholar 

  • Grattapaglia D & Bradshaw HD Jr (1994) Nuclear DNA content of commercially important Eucalyptus species and hybrids. Can. J. For. Res. 24: 1074–1078

    Google Scholar 

  • Gupta PK & Mascarenhas AF (1983) Essential oil production in relation to organogenesis in tissue cultures of Eucalyptus citriodora Hook. In: Sen SK & Giles KL (eds) Plant Cell Culture in Crop Improvement (pp 299–308). Plenum Press, New York

    Google Scholar 

  • Gupta PK & Mascarenhas AF (1987) Eucalyptus. In: Bonga JM & Durzan DJ (ed) Cell andTissueCulture in Forestry, Vol 3 (pp 385–399). Martinus Nijhoff Publisher, Dordrecht, The Netherlands

    Google Scholar 

  • Hare PD & Van Staden J (1994) Inhibitory effect of thidiazuron on the activity of cytokinin oxidase isolated from soybean callus. Plant Cell Physiol. 35: 1121–1125.

    CAS  Google Scholar 

  • Hartney VJ (1980) Vegetative propagation of the Eucalyptus. Aust. For. Res. 10: 191–211

    Google Scholar 

  • Huetteman CA & Preece JE (1993) Thidiazuron -Apotent cytokinin forwoody plant tissue culture. Plant Cell Tiss. Org. Cult. 33: 105–119

    Article  CAS  Google Scholar 

  • Kitahara EH & Caldas LS (1975) Shoot and root formation in hypocotyl callus cultures of Eucalyptus. For. Sci. 21: 242–243

    CAS  Google Scholar 

  • Kondrasheva NYU & Yatsenko-Khmelevsky AA (1974) Aptitude de l'´epith´elium des conduits r´esinifères du pin à la formation des cals en culture de tissus. Bjull. Moskov. Obshchest. Ispytalelej Prirody, otd bid., SSSR, 79: 132–139

    Google Scholar 

  • Lain´e E & David A (1994) Regeneration of plants from leaf explants of micropropagated clonal Eucalyptus grandis. Plant Cell Rep. 13: 473–476

    Google Scholar 

  • Lison L (1960) Histochimie et cytochimie animales. Gauthiers-Villars (ed) Paris

  • Lloyd G & McCown B (1981) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Intern. Plant Propagators' Soc. Combined Proc. 30: 421–427

    Google Scholar 

  • Marie D & Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol. Cell 78: 47–51

    Article  Google Scholar 

  • McComb JA (1994) Clonal propagation of eucalypts. In: Lindsey K (ed) Plant Tissue Culture Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • McComb JA & Bennett IJ (1986) Eucalypts (Eucalyptus spp.). In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry, Vol 1 (pp 340-362). Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  • Mehra-Palta A (1982) Clonal propagation of Eucalyptus by tissue culture. Plant Sci. Lett. 26: 1–11

    Article  CAS  Google Scholar 

  • Monnier M, Tranvan H & Thomas M(1983) Evolution du cotyl´edon isol´e en culture in vitro. Bull. Soc. Bot. Fr. (Actualit´es botaniques)130: 57–66

    Google Scholar 

  • Muralidharan EM & Mascarenhas AF (1987) In vitro plantlet formation by organogenesis in Eucalyptus camaldulensis and by somatic embryogenesis in Eucalyptus citriodora. Plant Cell Rep. 6: 256–259

    Article  Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15:473–497

    Article  CAS  Google Scholar 

  • Oka S, Yeng EC & Thorpe TA(1982) Shoot formation in Eucalyptus globulus hypocotyl explants. N. Z. J. For. Sci. 12: 501–509

    Google Scholar 

  • Peterson RL, Scott MG & Ellis BE (1978) Structure of stem-derived callus of Ruta graveolens: Meristems, leaves and secretory structures. Can. J. Bot. 56: 2717–2729

    Google Scholar 

  • Subbaiah MM & Minocha SC (1990) Shoot regeneration from stem and leaf callus of Eucalyptus tereticornis. Plant Cell Rep. 9: 370–373

    Article  CAS  Google Scholar 

  • Teulières C & Boudet AM (1992) Obtention et explication de systèmes simplifi´es (cellules, protoplastes) chez le genre Eucalyptus en vue de l'´etude et de l'am´elioration de la r´esistances au froid. AFOCEL 1991, 'Biotechnologies appliqu´ees aux arbres forestiers', Paris, 127–156, ISSN 03998-494X

  • White PR (1943) A Handbook on Plant Tissue Culture. J. Cattell Press, Lancaster Penn

    Google Scholar 

  • Yeung EC, Aitken J, Biondi S& Thorpe T (1981) Shoot histogenesis in cotyledon explants of Radiata pine. Bot. Gaz. 142: 494–501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azmi, A., Noin, M., Landré, P. et al. High frequency plant regeneration from Eucalyptus globulus Labill. hypocotyls: Ontogenesis and ploidy level of the regenerants. Plant Cell, Tissue and Organ Culture 51, 9–16 (1997). https://doi.org/10.1023/A:1005920807555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005920807555

Navigation