Skip to main content
Log in

MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have identified two single-copy genes from the model legume Medicago truncatula (MtENOD16 and 20) whose expression can be correlated with early stages of root nodulation and whose predicted coding sequences are partially homologous to both pea/vetch ENOD5 and soybean N315/ENOD55. Database searching and sequence alignment have defined the encoded early nodulins as a distinct sub-family of phytocyanin-related proteins, although the absence of key ligands implies that they are unlikely to bind copper. Molecular modelling based on known phytocyanin structure has been used to predict the 3-dimensional conformation of the principle globular domain of MtENOD16/20. Additional structural features common to both early nodulin and phytocyanin precursors include an N-terminal transit peptide, a highly variable (hydroxy)proline-rich sequence which probably undergoes extensive post-translational modification, and a hydrophobic C-terminal tail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adman ET: Copper protein structures. Adv Protein Chem 42: 145-197 (1991).

    Google Scholar 

  2. Barker DG, Bianchi S, Blondon F, Datté Y, Duc G, Flament P, Gallusci P, Génier P, Guy P, Muel X, Tourneur J, Dénarié J, Huguet T: Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobiumlegume symbiosis. Plant Mol Biol Rep 8: 40-49 (1990).

    Google Scholar 

  3. Bergman C, Gandvick EK, Nyman PO, Strid L: The amino acid sequence of stellacyanin from the lacquer tree. Biochem Biophys Res Commun 77: 1052-1059 (1977).

    Google Scholar 

  4. de Billy F, Barker DG, Gallusci P, Truchet G: Leghemoglobin gene transcription is triggered in a single cell layer of the indeterminate nitrogenfixing root nodule of alfalfa. Plant J 1: 27-35 (1991).

    Google Scholar 

  5. de Blank C, Mylona P, Yang WC, Katinakis P, Bisseling T, Franssen H: Characterization of the soybean early nodulin cDNA clone GmENOD55. Plant Mol Biol 22: 1167-1171 (1993).

    Google Scholar 

  6. Drew JE, Gatehouse, JA: Isolation and characterisation of a pea pod cDNA encoding a putative blue copper protein correlated with lignin deposition. J Exp Bot 45: 1873-1884 (1994).

    Google Scholar 

  7. van Driessche G, Dennison C, Sykes AG, van Beeumen J: Heterogeneity of the covalent structure of the blue copper protein umecyanin from horseradish roots. Protein Sci 4: 209-227 (1995).

    Google Scholar 

  8. Fields BA, Guss JM, Freeman HC: Three-dimensional model for stellacyanin, a ‘blue’ copperprotein. J Mol Biol 222: 1053-1065 (1991).

    Google Scholar 

  9. Franssen H.J, Vijn I, Yang WC, Bisseling T: Developmental aspects of the Rhizobiumlegume symbiosis. Plant Mol Biol 19: 89-107 (1992).

    Google Scholar 

  10. Gallusci P, Dedieu A, Journet EP, Huguet T, Barker DG: Synchronous expression of leghemoglobin genes in Medicago truncatula during nitrogenfixing root nodule development and in response to exogenously supplied nitrate. Plant Mol Biol 17: 335-349 (1991).

    Google Scholar 

  11. Gamas P, de Carvalho-Niebel F, Lescure N, Cullimore JV: Use of a subtractive hybridization approach to identify newMedicago truncatula genes induced during root nodule development. MPMI 9: 233-242 (1996).

    Google Scholar 

  12. Guss JM, Freeman HC: Structure of oxidized poplar plastocyanin at 1.6 È resolution. J Mol Biol 169: 521-563 (1983).

    Google Scholar 

  13. Guss JM, Merritt EA, Phizackerley RP, Freeman HC: The structure of a phytocyanin, the basic blue protein from cucumber, refined at 1.8 È resolution. J Mol Biol 262: 686-705 (1996).

    Google Scholar 

  14. Guss JM, Merritt EA, Phizackerley RP, Hedman B, Murata M, Hodgson KO, Freeman HC: Phase determination by multiplewavelength Xray diffraction: crystal structure of a basic blue copper protein from cucumbers. Science 241: 806-811 (1988).

    Google Scholar 

  15. Van Gysel A, Van Montagu M, Inzé D: A negatively lightregulated gene from Arabidopsis thaliana encodes a protein showing high similarity to blue copperbinding proteins. Gene 136: 79-85 (1993).

    Google Scholar 

  16. Hart PJ, Nersissian AM, Herrmann RG, Nalbandyan RM, Valentine JS, Eisenberg D: A missing link in cupredoxins: Crystal structure of cucumber stellacyanin at 1.6 È resolution. Protein Sci 5: 2175-2183 (1996).

    Google Scholar 

  17. von Heijne G: Patterns of amino acids near signalsequence cleavage sites. Eur J Biochem 133: 17-21 (1983).

    Google Scholar 

  18. Horvath B, Heidstra R, Lados M, Moerman M, Spaink HP, Promé JC, van Kammen A, Bisseling T: Lipo oligosaccharides of Rhizobium induce infectionrelated early nodulin gene expression in pea root hairs. Plant J 4: 727-733 (1993).

    Google Scholar 

  19. Hunt LT, George DG, Yeh LL: Ragweed allergen Ra3: Relationship to some type 1 copperbinding proteins. J Mol Evol 21: 126-132 (1985).

    Google Scholar 

  20. Kieliszewski MJ, Lamport DTA: Extensin: repetitive motifs, functional sites, posttranslational codes, and phylogeny. Plant J 5: 157-172 (1994).

    Google Scholar 

  21. Klapper DG, Goodfriend L, Capra JD: Amino acid sequence of ragweed allergen Ra3. Biochemistry 19: 5729-5734 (1980).

    Google Scholar 

  22. Kouchi H, Hata S: Isolation and characterisation of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Gen 238: 106-119 (1993).

    Google Scholar 

  23. Low MG, Ferguson MAJ, Futerman AH, Silman I: Covalently attached phosphoinositol as a hydrophobic anchor for membrane proteins. Trends Biochem Sci 11: 212-215 (1986).

    Google Scholar 

  24. Mann K, Schäfer W, Thoenes U, Messerschmidt A, Mehrabian Z, Nalbandyan R: The amino acid sequence of a type 1 copper protein with an unusual serineand hydroxyprolinerich Cterminal domain isolated from cucumber peelings. FEBS Lett 314: 220-223 (1992).

    Google Scholar 

  25. Murata M, Begg GS, Lambrou F, Leslie B, Simpson RJ, Freeman HC, Morgan FJ: Amino acid sequence of a basic blue protein from cucumber seedlings. Proc Natl Acad Sci USA 79: 6434-6437 (1982).

    Google Scholar 

  26. Mylona P, Pawlowski K, Bisseling T: Symbiotic nitrogen fixation. Plant Cell 7: 869-885 (1995).

    Google Scholar 

  27. Nersissian AM, Mehrabian ZB, Nalbandyan RM, Hart PJ, Fraczkewicz G, Czernuszewicz RS, Bender CJ, Peisach J, Herrmann RG, Valentine JS: Cloning, expression and spectroscopic characterization of Cucumis sativus stellacyanin in its nonglycosylated form. Plant Sci 5: 2184-2192 (1996).

    Google Scholar 

  28. Pichon M, Journet EP, Dedieu A, de Billy F, Truchet G, Barker DG: Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. Plant Cell 4: 1199-1211 (1992).

    Google Scholar 

  29. Ryden LG, Hunt LT: Evolution of protein complexity: the blue coppercontaining oxidases and related proteins. J Mol Evol 36: 41-66 (1993).

    Google Scholar 

  30. Ryden LG: Structure and evolution of the small blue proteins. In: Lontie R (ed) Copper Proteins and Copper Enzymes, vol. 3, pp. 183-214. CRC Press, Boca Raton, FL (1994).

    Google Scholar 

  31. Scheres B, van Engelen F, van der Knaap E, van de Wiel C, van Kammen A, Bisseling T: Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell 2: 687-700 (1990).

    Google Scholar 

  32. Showalter AM: Structure and function of plant cell wall proteins. Plant Cell 5: 923 (1993).

    Google Scholar 

  33. Sutcliffe MJ Haneef I, Carney D, Blundell TL: Knowledgebased modelling of homologous proteins, part I: Three dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng 1: 377-384 (1987).

    Google Scholar 

  34. Thompson JD, Higgins DG, Gibson TJ: CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucl Acids Res 22: 4673-4680 (1994).

    Google Scholar 

  35. Vijn I, Martinez-Abarca F, Yang WC, das Neves L, van Brussel A, van Kammen A, Bisseling T: Early nodulin gene expression during Nod factorinduced processes in Vicia sativa. Plant J 8: 111-119 (1995).

    Google Scholar 

  36. Vijn I, Yang WC, Pallisgard N, Jensen EO, van Kammen A, Bisseling T: VsENOD5, VsENOD12 and VsENOD40 expression during Rhizobiuminduced nodule formation on Vicia sativa roots. Plant Mol Biol 28: 1111-1119 (1995).

    Google Scholar 

  37. Woessner JP, Goodenough UW: Zygote and vegetative cell wall proteins in Chlamydomonas reinhardtii share a common epitope, (SerPro)x. Plant Sci 83: 65-76 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greene, E.A., Erard, M., Dedieu, A. et al. MtENOD16 and 20 are members of a family of phytocyanin-related early nodulins. Plant Mol Biol 36, 775–783 (1998). https://doi.org/10.1023/A:1005916821224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005916821224

Navigation