Skip to main content
Log in

Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Macrophages can recognize and eliminate tumor cells. To this effect, these cells use a variety of cytotoxic effectors. Recent work has paid particular attention to nitric oxide (NO) and its metabolic by-products in mediating macrophage tumor cytotoxicity. Moreover, work from this and other laboratories have indicated that macrophage-dependent, NO mediated tumor cell death meets the morphologic and molecular criteria that define apoptotic cell death. This review will initially discusss the characteristics of macrophage tumor cytotoxicity and the potential mechanisms by which NO can induce apoptosis in tumor cells. In addition, observations of spontaneous and acquired resistance to NO will be analyzed. Lastly, the relevance of results obtained using animal cells to the biology of the human macrophage will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coley WB: The treatment of malignant tumors by repeated inoculations of erysipelas: with a report of ten original cases. Am J Med Sci 105: 487-511, 1893

    Google Scholar 

  2. Hibbs JB Jr., Taintor RR, Vavrin Z, Granger DL, Drapier J-C, Amber IJ, Lancaster JR Jr.: Synthesis of nitric oxide from a terminal guanidino nitrogen atom of L-arginine: A molecular mechanism regulating cellular proliferation that targets intracellular iron. In: Moncada S, Higgs EA (eds) Nitric Oxide from L-arginine: A Bioregulatory System. Elsevier Science Publishers B.V., Amsterdam, 1990, pp 189-223

    Google Scholar 

  3. Hibbs JB Jr., Lambert LH Jr., Remington JS: Resistance to murine tumors conferred by chronic infection with intracellular protozoa, Toxoplasma gondiiand Besnoitia jellisoni.J Infect Dis 124: 587-592, 1971

    PubMed  Google Scholar 

  4. Bröne B, Gölkel C, von Knethen A: Cytokine and low-level nitric oxide prestimulation block p53 accumulation and apoptosis of Raw 264.7 macrophages. Biochem Biophys Res Commun 229: 396-401, 1996

    Article  PubMed  Google Scholar 

  5. Hibbs JB Jr., Lambert LH Jr., Remington JS: Possible role of macrophage mediated nonspecific cytotoxicity in tumour resistance. Nature New Biol 235: 48-50, 1972

    PubMed  Google Scholar 

  6. Keller R: Cytostatic elimination of syngeneic rat tumor cells in vitroby nonspecifically activated macrophages. J Exp Med 138: 625-644, 1973

    Article  PubMed  Google Scholar 

  7. Hibbs JB Jr.: Activated macrophages as cytotoxic effector cells. II. Requirement for local persistance of inducing antigen. Transplantation 19: 81-87, 1975

    PubMed  Google Scholar 

  8. Adams DO, Hamilton TA: The cell biology of macrophage activation. Am Rev Immunol 2: 283-318, 1984

    Article  Google Scholar 

  9. Cohn ZA: The activation of mononuclear phagocytes: Fact, fancy, and future. J Immunol 121: 813-816, 1978

    PubMed  Google Scholar 

  10. Adams DO, Johnson WJ, Marino PA: Mechanisms of target recognition and destruction in macrophage-mediated tumor cytotoxicity. Fed Proc 41: 2212-2221, 1982

    PubMed  Google Scholar 

  11. Adams DO, Nathan CF: Molecular mechanisms in tumorcell killing by activated macrophages. Immunol Today 4: 166-170, 1983

    Article  Google Scholar 

  12. Bonner FT, Stedman G: The chemistry of nitric oxide and redox-related species. In: Feelish M, Stamler JS (eds) Methods in Nitric Oxide Research. John Wiley & Sons, Chichester, 1996, pp 3-18

    Google Scholar 

  13. Stamler JS, Feelisch M: Biochemistry of nitric oxide and redox-related species. In: Feelisch M, Stamler JS (eds) Methods in Nitric Oxide Research. John Wiley & Sons, Chichester, 1996, pp 19-27

    Google Scholar 

  14. Hibbs JB Jr., Taintor RR, Vavrin Z: Macrophage cytotoxicity: Role for L-arginine deiminase and Amino nitrogen oxidation to nitrite. Science 235: 473-476, 1987

    PubMed  Google Scholar 

  15. Hibbs JB Jr., Vavrin Z, Taintor RR: L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol 138: 550-565, 1987

    PubMed  Google Scholar 

  16. Drapier J-C, Hibbs JB Jr.: Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J Immunol 140: 2829-2838, 1988

    PubMed  Google Scholar 

  17. Hibbs JB Jr., Taintor RR, Vavrin Z, Rachlin EM: Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157: 87-94, 1988

    PubMed  Google Scholar 

  18. Stuehr DJ, Nathan CF: Nitric oxide: A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169: 1543-1555, 1989

    PubMed  Google Scholar 

  19. Granger DL, Hehninger AL: Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells. J Cell Biol 95: 527-535, 1982

    Article  PubMed  Google Scholar 

  20. Hibbs JB Jr., Taintor RR, Vavrin Z: Iron depletion: Possible cause of tumor cell cytotoxicity induced by activated macrophages. Biochem Biophys Res Commun 123: 716-723, 1984

    PubMed  Google Scholar 

  21. Albina JE, Mastrofrancesco B: Modulation of glucose metabolism in macrophages by products of nitric oxide synthase. Am J Physiol 264: C1594-C1599, 1993

    PubMed  Google Scholar 

  22. Soo Kwon N, Stuehr DJ, Nathan CF: Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med 174: 761-767, 1991

    Article  PubMed  Google Scholar 

  23. Lepoivre M, Flaman JM, Henry Y: Early loss of the tyrosyl radical in ribonucleotide reductase of adenocarcinoma cells producing nitric oxide. J Biol Chem 267: 22994-23000, 1992

    PubMed  Google Scholar 

  24. Kwon NS, Stuehr DJ, Nathan CF: Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med 174: 761, 1991

    Article  PubMed  Google Scholar 

  25. Morris SM Jr., Billiar TR: New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol 266: E829-E839, 1994

    PubMed  Google Scholar 

  26. Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR: DNA damage and mutation in human cells exposed to nitric oxide in vitro.Proc Natl Acad Sci USA 89: 3030-3034, 1992

    PubMed  Google Scholar 

  27. Wink D, Kasprzak K, Maragos C, Elespuru R, Misra M, Dunams T, Cebula T, Koch W, Andrews A, Allen J, Keefer L: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254: 1001-1003, 1991

    PubMed  Google Scholar 

  28. Kröncke K-D, Fehsel K, Schmidt T, Zenke FT, Dasting I, Wesener JR, Bettermann H, Breunig KD, Kolb-Bachofen V: Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc fingertype yeast transcription activator LAC9. Biochem Biophys Res Commun 200: 1105-1110, 1994

    Article  PubMed  Google Scholar 

  29. Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271: C1424-C1437, 1996

    PubMed  Google Scholar 

  30. Lin K-T, Xue J-Y, Nomen M, Spur B, Wong PY-K: Peroxynitrite-induced apoptosis in HL-60 cells. J Biol Chem 270: 16487-16490, 1995

    PubMed  Google Scholar 

  31. Martin BL, Wu D, Jakes S, Graves DJ: Chemical influences on the specificity of tyrosine phosphorylation. J Biol Chem 265: 7108-7111, 1990

    PubMed  Google Scholar 

  32. Mateo RB, Reichner JS, Albina JE: NO is not sufficient to explain maximal cytotoxicity of tumoricidal macrophages against an NO-sensitive cell line. J Leukocyte Biol 60: 245-252, 1996

    PubMed  Google Scholar 

  33. Tanaka T, Akira S, Yoshida K, Umemoto M, Yoneda Y, Shirafuji N, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T: Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytoxicity by macrophages. Cell 80: 353-361, 1995

    Article  PubMed  Google Scholar 

  34. Albina JE, Mills CD, Henry WL Jr., Caldwell MD: Regulation of macrophage physiology by L-arginine: Role of the oxidative L-arginine deiminase pathway. J Immunol 143: 3641-3646, 1989

    PubMed  Google Scholar 

  35. Albina JE, Mills CD, Caldwell MD: Alterations in macrophage physiology associated with the metabolism of L-arginine through the oxidative L-arginine deiminase pathway. In: Moncada S, Higgs EA (eds) Nitric Oxide from L-arginine: A Bioregulatory System. Elsevier Science Publishers B.V., Amsterdam, 1990, pp 243-248

    Google Scholar 

  36. Takema M, Inaba K, Uno K, Kakihara K-I, Tawara K, Muramatsu S: Effect of L-arginine on the retention of macrophage tumoricidal activity. J Immunol 146: 1928-1933, 1991

    PubMed  Google Scholar 

  37. Albina JE, Cui S, Mateo RB, Reichner JS: Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol 150: 5080-5085, 1993

    PubMed  Google Scholar 

  38. Kerr JFR, Wyllie AH, Currie AR: Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239, 1972

    PubMed  Google Scholar 

  39. Gerschenson LE, Rotello RJ: Apoptosis: A different type of cell death. FASEB J 6: 2450-2455, 1992

    PubMed  Google Scholar 

  40. Wyllie AH: Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555, 1980

    PubMed  Google Scholar 

  41. Rubin BY, Anderson SL, Lunn RM, Hellermann GR, Smith LJ: Fragmentation of cellular DNA is a nonspecific indicator of responsiveness to tumor necrosis factor. J Biol Response Mod 8: 553-559, 1989

    PubMed  Google Scholar 

  42. Bortner CD, Oldenburg NBE, Cidlowski JA: The role of DNA fragmentation in apoptosis. Trends Cell Biol 5: 21-26, 1995

    Article  PubMed  Google Scholar 

  43. Cohen GM, Sun X-M, Snowden RT, Dinsdale D, Skilleter DN: Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 286: 331-334, 1992

    PubMed  Google Scholar 

  44. Jacobson MD, Burne JF, Raff MC: Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J 13: 1899-1910, 1994

    PubMed  Google Scholar 

  45. Cui S, Reichner JS, Mateo RB, Albina JE: Activated murine macrophages induce apoptosis in tumor cells through nitric oxide-dependent or-independent mechanisms. Cancer Res 54: 2462-2467, 1994

    PubMed  Google Scholar 

  46. Kitajima I, Kawahara K, Nakajima T, Soejima Y, Matsuyama T, Maruyama I: Nitric oxide-mediated apoptosis in murine mastocytoma. Biochem Biophys Res Commun 204: 244-251, 1994

    Article  PubMed  Google Scholar 

  47. Lu L, Bonham CA, Chambers FG, Watkins SC, Hoffman RA, Simmons RL, Thomson AW: Induction of nitric oxide synthase in mouse dendritic cells by IFN-(??endotoxin, and interaction with allogeneic T cells. Nitric oxide production is associated with dendritic cell apoptosis. J Immunol 157: 3577-3586, 1996

    PubMed  Google Scholar 

  48. Shimaoka M, Iida T, Ohara A, Taenaka N, Mashimo T, Honda T, Yoshiya I: NOC, a nitric-oxide-releasing compound, induces dose dependent apoptosis in macrophages. Biochem Biophys Res Commun 209: 519-526, 1995

    Article  PubMed  Google Scholar 

  49. Geng Y-J, Hellstrand K, Wennmalm Å, Hansson GK: Apototic death of human leukemic cells induced by vascular cells expressing nitric oxide synthase in response to ?-interferon and tumor necrosis factor-a. Cancer Res 56: 866-874, 1996

    PubMed  Google Scholar 

  50. Kuo M-L, Chau Y-P, Wang J-H, Shiah S-G: Inhibitors of poly (ADP-ribose) polymerase block nitric oxide-induced apoptosis but not differentiation in human leukemia HL-60 cells. Biochem Biophys Res Commun 219: 502-508, 1996

    Article  PubMed  Google Scholar 

  51. Sveinbjørnsson B, Olsen R, Seternes OM, Seljelid R: Macrophage cytotoxicity against murine meth A sarcoma involves nitric oxide-mediated apoptosis. Biochem Biophys Res Commun 223: 643-649, 1996

    Article  PubMed  Google Scholar 

  52. Fehsel K, Kröncke K-D, Meyer KL, Huber H, Wahn V, Kolb-Bachofen V: Nitric oxide induces apoptosis in mouse thymocytes. J Immunol 155: 2858-2865, 1995

    PubMed  Google Scholar 

  53. Stangel M, Zettl UK, Mix E, Zielasek J, Toyka KV, Hartung H-P, Gold R: H2O2 and nitric oxide-mediated oxidative stress induce apoptosis in rat skeletal muscle myoblasts. J Neuropathol Exp Neurol 55: 36-43, 1996

    PubMed  Google Scholar 

  54. Okuda Y, Sakoda S, Shimaoka M, Yanagihara T: Nitric oxide induces apoptosis in mouse splenic T lymphocytes. Immunol Lett 52: 135-138, 1996

    Article  PubMed  Google Scholar 

  55. Messmer UK, Lapetina EG, Bröne B: Nitric oxide-induced apoptosis in RAW 264.7 macrophages is antagonized by protein kinase C-and protein kinase A-activating compounds. Mol Pharmacol 47: 757-765, 1995

    PubMed  Google Scholar 

  56. Zhang J, Dawson VL, Dawson TM, Snyder SH: Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263: 687-689, 1994

    PubMed  Google Scholar 

  57. Häussinger D: Hepatocyte heterogeneity in glutamine and ammonia metabolism and the role of an intercellular glutamine cycle during ureogenesis in perfused rat liver. Eur J Biochem 133: 269-275, 1983

    PubMed  Google Scholar 

  58. Vedia LMY, McDonald D, Reep B, Bröne D, Di Silvio M, Billiar TR, Lapetina EG: Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267: 24929-24932, 1992

    PubMed  Google Scholar 

  59. Mateo RB, Reichner JS, Mastrofrancesco B, Kraft-Stolar D, Albina JE: Impact of nitric oxide on macrophage glucose metabolism and glyceraldehyde-3-phosphate dehydrogenase activity. Am J Physiol 268: 1995

  60. Albina JE, Reichner JS: Nitric oxide in inflammation and immunity. New Horizons 3: 46-64, 1995

    PubMed  Google Scholar 

  61. Kim Y-M, Bergonia H, Lancaster JR Jr: Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett 374: 228-232, 1995

    Article  PubMed  Google Scholar 

  62. Walker MW, Kinter MT, Roberts RJ, Spitz DR: Nitric oxide-induced cytotoxicity involvement of cellular resistance to oxidative stress and the role of glutathione in protection. Pediatr Res 37: 41-49, 1995

    PubMed  Google Scholar 

  63. Jones DP, Maellaro E, Jiang S, Slater AFG, Orrenius S: Effects of N-acetyl-L-cysteine on T-cell apoptosis are not mediated by increased cellular glutathione. Immunol Lett 45: 205-209, 1995

    Article  PubMed  Google Scholar 

  64. Butte TM, Sandstrom PA: Oxidative stress as a mediator of apoptosis. Immunol Today 15: 7-10, 1994

    Article  PubMed  Google Scholar 

  65. Schwarz MA, Lazo JS, Yalowich JC, Allen WP, Whitmore M, Bergonia HA, Tzeng E, Billiar TR, Robbins PD, Lancaster JR Jr., Pitt BR: Metallothionein protects against the cytotoxic and DNA-damaging effects of nitric oxide. Proc Natl Acad Sci USA 92: 4452-4456, 1995

    PubMed  Google Scholar 

  66. Heller B, Wang Z-Q, Wagner EF, Radons J, Bürkle A, Fehsel K, Burkart V, Kolb H: Inactivation of the poly(ADP-ribose) polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J Biol Chem 270: 11176-11180, 1995

    Article  PubMed  Google Scholar 

  67. Berger NA: Symposium: Cellular response to DNA damage: The role of poly(ADP-ribose). Poly(ADP-ribose) in the cellular response to DNA damage. Rad Res 101: 4-15, 1985

    Google Scholar 

  68. Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG: Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest 77: 1312-1320, 1986

    PubMed  Google Scholar 

  69. Messmer UK, Reimer DM, Reed JC, Bröne B: Nitric oxide induced poly(ADP-ribose) polymerase cleavage in RAW 264.7 macrophage apoptosis is blocked by Bcl-2. FEBS Lett 384: 162-166, 1996

    Article  PubMed  Google Scholar 

  70. Stewart BW: Mechanisms of apoptosis: Integration of genetic, biochemical, and cellular indicators. J Natl Cancer Inst 86: 1286-1296, 1994

    PubMed  Google Scholar 

  71. Schreck R, Rieber P, Baeuerle PA: Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kB transcription factor and HIV-1. EMBO J 10: 2247-2258, 1991

    PubMed  Google Scholar 

  72. Radi R, Beckman JS, Bush KM, Freeman BA: Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 288: 481-487, 1991

    PubMed  Google Scholar 

  73. Tabuchi A, Sano K, Oh E, Tsuchiya T, Tsuda M: Modulation of AP-1 activity by nitric oxide (NO) in vitro: NO-mediated modulation of AP-1. FEBS Lett 351: 123-127, 1994

    Article  PubMed  Google Scholar 

  74. Lander HM, Sehajpal PK, Novogrodsky A: Nitric oxide signaling: A possible role for G proteins. J Immunol 151: 7182-7187, 1993

    PubMed  Google Scholar 

  75. Gopalakrishna R, Chen ZH, Gundimeda U: Nitric oxide and nitric oxide-generating agents induce a reversible inactivation of protein kinase C activity and phorbol ester binding. J Biol Chem 268: 27180-27185, 1993

    PubMed  Google Scholar 

  76. Lucas M, Sánchez-Margalet V, Sanz A, Solano F: Protein kinase C activation promotes cell survival in mature lymphocytes prone to apoptosis. Biochem Pharmacol 47: 667-672, 1994

    Article  PubMed  Google Scholar 

  77. Walker PR, Kwast-Welfeld J, Gourdeau H, LeBlanc J, Neugebauer W, Sikorska M: Relationship between apoptosis and the cell cycle in lymphocytes: Roles of protein kinase C, tyrosine phosphorylation, and AP1. Exp Cell Res 207: 142-151, 1993

    Article  PubMed  Google Scholar 

  78. Hawkins CJ, Vaux DL: Analysis of the role of bcl-2 in apoptosis. Immunol Rev 142: 127-139, 1994

    PubMed  Google Scholar 

  79. Canman CE, Kastan MB: Induction of apoptosis by tumor suppressor genes and oncogenes. Semin Cancer Biol 6: 17-25, 1995

    Article  PubMed  Google Scholar 

  80. Messmer UK, Ankarcrona M, Nicotera P, Bröne B: p53 expression in nitric oxide-induced apoptosis. FEBS Lett 355: 23-26, 1994

    Article  PubMed  Google Scholar 

  81. Levine AJ: p53, the cellular gatekeeper for growth and division. Cell 88: 323-331, 1997

    Article  PubMed  Google Scholar 

  82. Messmer UK, Reed JC, Bröne B: Bcl-2 protects macrophages from nitric oxide-induced apoptosis. J Biol Chem 271: 20192-20197, 1996

    Article  PubMed  Google Scholar 

  83. Messmer UK, Bröne B: Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem J 319: 299-305, 1995

    Google Scholar 

  84. Albina JE, Martin B-A, Henry WL Jr., Louis CA, Reichner JS: B cell lymphoma-2 transfected P815 cells resist reactive nitrogen intermediate-mediated macrophage-dependent cytotoxicity. J Immunol 157: 279-283, 1996

    PubMed  Google Scholar 

  85. Korsmeyer SJ, Yin X-M, Oltvai ZN, Veis-Novack DJ, Linette GP: Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family. Biochim Biophys Acta 1271: 63-66, 1995

    PubMed  Google Scholar 

  86. Hockenbery DM, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ: Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348: 334-336, 1990

    Article  PubMed  Google Scholar 

  87. Hockenbery DM, Oltvai ZN, Yin X-M, Milliman CL, Korsmeyer SJ: Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75: 241-251, 1993

    PubMed  Google Scholar 

  88. Jacobson MD, Raff MC: Programmed cell death and Bcl-2 protection in very low oxygen: Nature 374: 814-816, 1995

    Article  PubMed  Google Scholar 

  89. Muschel RJ, Bernhard EJ, Garza L, McKenna WG, Koch CJ: Induction of apoptosis at different oxygen tensions: Evidence that oxygen radicals do not mediate apoptotic signaling. Cancer Res 55: 995-998, 1995

    PubMed  Google Scholar 

  90. Genaro AM, Hortelano S, Alvarez A, Martínez AC, Boscá L: Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J Clin Invest 95: 1884-1890, 1995

    PubMed  Google Scholar 

  91. Xie K, Huang S, Wang Y, Beltran PJ, Juang S-H, Dong Z, Reed JC, McDonnell TJ, McConkey DJ, Fidler IJ: Bcl-2 protects cells from cytokine-induced nitric-oxide-dependent apoptosis. Cancer Immunol Immunother 43: 109-115, 1996

    Article  PubMed  Google Scholar 

  92. Nussler AK, Billiar TR: Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukocyte Biol 54: 171-178, 1993

    PubMed  Google Scholar 

  93. Shimizu T, Kubota M, Tanizawa H, Sano H, Kasai Y, Hashimoto H, Akima Y, Mikawa H: Inhibition of both etoposideinduced DNA fragmentation and activation of poly(ADPribose) synthesis by zinc ion. Biochem Biophys Res Commun 169: 1172-1177, 1990

    PubMed  Google Scholar 

  94. Albina JE: On the expression of nitric oxide synthase by human macrophages. Why no NO? J Leukocyte Biol 58: 643-649, 1995

    PubMed  Google Scholar 

  95. Schneemann M, Schoedon G, Linsheid P, Walter R, Blau N, Schaffner A: Nitrite generation in interleukin-4-treated human macrophage cultures does not involve the nitric oxide synthase pathway. J Infect Dis 175: 130-135, 1997

    PubMed  Google Scholar 

  96. Mautino G, Paul-Eugène N, Chanez P, Vignola AM, Kolb JP, Bousquet J, Dugas B: Heterogeneous spontaneous and interleukin-4-induced nitric oxide production by human monocytes. J Leukocyte Biol 56: 15-20, 1994

    PubMed  Google Scholar 

  97. Defer M-C, Dugas B, Paul-Eugène N, Yamaoka K, Kolb J-P, Damais C: Rôle de l’interleukine-4 dans la régulation de la production de monoxyde d’azote (NO) par les monocytes humains normaux. C R Acad Sci Paris 317: 1021-1025, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albina, J.E., Reichner, J.S. Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis. Cancer Metastasis Rev 17, 39–53 (1998). https://doi.org/10.1023/A:1005904704618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005904704618

Navigation