Journal of Atmospheric Chemistry

, Volume 29, Issue 1, pp 45–54 | Cite as

Spectroscopic Characterization of Humic-Like Substances in Airborne Particulate Matter

  • N. Havers
  • P. Burba
  • J. Lambert
  • D. Klockow

Abstract

In a standard reference air dust (NIST 1648 – urban particulate matter) as well as in airborne particulate matter collected in German urban and rural areas (Dortmund, Sauerland) 10% and more of the organic carbon can be attributed to macromolecular substances like humic and fulvic acids (HA, FA). Indirect evidence for the presence of humin was also obtained. HA and FA extracted from NIST 1648 and other urban and rural atmospheric particles using 0.1 m NaOH and isolated by ion-exchangers were characterized by their molecular-size distribution applying multistage ultrafiltration, their carbon content and their UV/VIS, Fourier-transformed infrared (FTIR) and nuclear magnetic resonance (1H-NMR) spectra. Summarizing, the structural studies exhibit that these humic-like substances (HULIS) contained in air dust samples are small in their molecular size and rich in aliphatic and carbohydrate substructures compared to HA and FA from soils and aquatic systems.

airborne particulate matter humic-like substances humic acids fulvic acids organic carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbt–Braun, G., 1992: Spectroscopic characterization of humic substances in the UV/VIS region and by infrared spectroscopy, in G. Matthess, F. H. Frimmel, P. Hirsch, H. D. Schulz, and E. Usdowski (eds), Progress in Hydrogeochemistry, Springer–Verlag, Berlin, Heidelberg, pp. 29–35.Google Scholar
  2. Aiken, G. R., Mcknight, D. M., and Wershaw, R. L. (eds), 1985: Humic Substances in Soil, Sediment and Water, Wiley, New York.Google Scholar
  3. Allard, B., Borèn, H., and Grimvall, A. (eds), 1991: Humic Substances in the Aquatic and Terrestial Environment, Springer–Verlag, Berlin.Google Scholar
  4. Andreae, M. O. and Crutzen, P. J., 1997: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science 276, 1052–1058.Google Scholar
  5. Bloom, P.R. and Leenheer, J.A., 1989:Vibrational, electronic and high–energy spectroscopic methods for characterizing humic substances, in M. H. B. Hayes, P. MacCarthy, R. L. Malcolm, and R. S. Swift (eds), Humic Substances II – In Search of Structure, Wiley, Chichester, pp. 409–448.Google Scholar
  6. Bolin, B., 1977: Changes of land biota and their importance for the carbon cycle, Science 4290, 613–615.Google Scholar
  7. Burba, P., Shkinev, V., and Spivakov, B. Ya., 1995: On–line fractionation and characterization of aquatic humic substances by means of sequential–stage ultrafiltration, Fresenius J. Anal. Chem. 351, 74–82.Google Scholar
  8. Cini, R., Innocenti, N. D., Loglio, D., Oppo, C., Orlandi, G., Stortini, M., Tesel, U., Udisti, R., 1996: Air–sea exchange: Sea salt and organic microcomponents in Antarctic snow, Int. J. Environ. Anal. Chem. 63, 15–27.Google Scholar
  9. Frimmel, F. H. and Christman, R. F. (eds), 1988: Humic Substances and their Role in the Environment, Wiley, Chichester.Google Scholar
  10. Frimmel, F. H. and Abbt–Braun, G. (eds), 1993: Deutsche Forschungsgemeinschaft, Refraktäre organische Säuren in Gewässern, Mitteilung der Senatskommission für Wasserforschung, Verlag Chemie, Weinheim, pp. 79–135.Google Scholar
  11. Hildemann, L. M., Rogge, W. F., Cass, G. R., Mazurek, M. A., and Simoneit, B. R. T., 1996: Contribution of primary aerosol emissions from vegetation–derived sources to fine particle concentrations in Los Angeles, J. Geophys. Res. 101, 19541–19549.Google Scholar
  12. Hiraide, M., Shima, T., and Kawaguchi, H., 1994: Separation and determination of dissolved and particulate humic substances in river water, Mikrochim. Acta 113, 269–276.Google Scholar
  13. Hoffmann, Th., Odum, J. R., Bowman, F., Collins, D., Klockow, D., Flagan, R., and Seinfeld, J. H., 1997: Formation of organic aersols from the oxidation of biogenic hydrocarbons, J. Atmos. Chem. 26, 189–222.Google Scholar
  14. Kerminen, V.–M., Mäkelä, T. E., Ottoson, C. H., Hillamo, R. E., Vilhunen, J., Rantanen, L., Havers, N., von Bohlen, A., and Klockow, D., 1997: Characterization of the particulate phase from a Diesel car exhaust, Environ. Sci. Technol. 31, 1883–1889.Google Scholar
  15. Ketseridis, G., Hahn, J., Jaenicke, R., and Junge, C., 1976: The organic constituents of atmospheric particulate matter, Atmos. Environ. 10, 603–610.Google Scholar
  16. Kunit, M. and Puxbaum, H., 1996: Enzymatic determination of the cellulose content of atmospheric aerosols, Atmos. Environ. 30(8), 1233–1236.Google Scholar
  17. Malcolm, R. L., 1991: Factors to be considered in the isolation and characterization of aquatic humic substances, in B. Allard, H. Boren, and A. Grimvall (eds), Humic Substances in the Aquatic and Terrestrial Environment, Springer–Verlag, Berlin, pp. 9–36.Google Scholar
  18. Mukai, H. and Ambe, Y., 1986: Characterization of a humic–like brown substance in airborne particulate matter and tentative identification of its origin, Atmos. Environ. 20, 813–819.Google Scholar
  19. Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., and Simoneit, B. R. T., 1993: Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation, Atmos. Environ. 27A, 1309–1330.Google Scholar
  20. Schnitzer, M. and Khan, S. U. (eds), 1978: Soil Organic Matter, Elsevier, New York, pp. 173–271.Google Scholar
  21. Simoneit, B. R. T., 1980: Eolian particulates from oceans and rural areas, their lipids, fulvic and humic acids and residual carbon, Phys. Chem. Earth 12, 343–352.Google Scholar
  22. Stevenson, F. J., 1994: Humus Chemistry, Wiley, New York.Google Scholar
  23. Wilson, M. A., Collin, P. S., and Tate, K. R., 1983: Proton–nuclear magnetic resonance study of a soil humic acid, J. Soil Sci. 24, 297–304.Google Scholar
  24. Wilson, M. A., 1987: NMR Techniques and Applications in Geochemistry and Soil Chemistry, Pergamon Press, Oxford–New York, pp. 182–216.Google Scholar
  25. Woodwell, G. M. and Houghton, R. H., 1977: Biotic influences on the world carbon budget, in W. Stumm (ed.), Global Chemical Cycles and Their Alterations by Man, Wiley, New York, pp. 61–72.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • N. Havers
    • 1
  • P. Burba
    • 1
  • J. Lambert
    • 1
  • D. Klockow
    • 1
  1. 1.Institut für Spektrochemie und Angewandte SpektroskopieDortmundGermany

Personalised recommendations