Skip to main content
Log in

Aspects of carbon and nitrogen cycling in soils of the Bornhöved Lake district II. Modelling the influence of temperature increase on soil respiration and organic carbon content in arable soils under different managements

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Based on field measurements in two agriculturalecosystems, soil respiration and long-term response ofsoil organic carbon content (SOC) was modelled. Themodel predicts the influence of temperature increaseas well as the effects of land-use over a period ofthirty years in a northern German glacial morainelandscape. One of the fields carried a maizemonoculture treated with cattle slurry in addition tomineral fertilizer (“maize monoculture”), the otherwas managed by crop rotation and recieved organicmanure (“crop rotation”). The soils of both fieldswere classified as cambic Arenosols. The soilrespiration was measured in the fields by means of theopen dynamic inverted-box method and an infrared gasanalyser. The mean annual soil respiration rates were 268 (maizemonoculture) and 287 mg CO2 m-2 h-1(crop rotation). Factors controlling soil respirationwere soil temperature, soil moisture, root respirationand carbon input into the soil. Q10-valuesof soil respiration were generally higher in winterthan in summer. This trend is interpreted as anadaptive response of the soil microbial communities.In the model a novel mathematical approach withvariable Q10-values as a result oftemperature and moisture adjustment is proposed. Withthe calibrated model soil respiration and SOC werecalculated for both fields and simulations over aperiod of thirty years were established. Simulationswere based on (1) local climatic data, 1961 until1990, and (2) a regional climate scenario for northernGermany with an average temperature increase of 2.1 K.Over the thirty years period with present climateconditions, the SOC pool under “crop rotation” wasnearly stable due to the higher carbon inputs, whereasabout 16 t C ha-1 were lost under “maizemonoculture”. Under global warming the mean annualsoil respiration for both fields increased and SOCdecreased by ca. 10 t C ha-1 under “croprotation” and by more than 20 t C ha-1 under“maize monoculture”. It was shown that overestimationof carbon losses in long-term prognoses can be avoidedby including a Q10-adjustment in soilrespiration models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biscoe PV, Scott RK &Monteith JL (1975) Barley and its environment. III. Carbon budget of the stand. Journal of Applied Ecology 12: 269-291

    Google Scholar 

  • Buyanovsky GA, Wagner GH &Gantzer CJ (1986) Soil respiration in a winter wheat ecosystem. Soil Sci. Soc. Am. Journal 50(2): 338-344

    Google Scholar 

  • Carlyle JC &Than UB (1988) Abiotic controls of soil respiration beneath an eighteen-year-old Pinus radiatastand in south-eastern Australia. Journal of Ecology 76(3): 654-662

    Google Scholar 

  • Cotrufo MF &Ineson P (1995) Effects of enhanced atmospheric CO2 and nutrient supply on the quality and subsequent decomposition of fine roots of Betula pendulaRoth. and Picea sitchensis(Bong.) Carr. Plant and Soil 170: 267-277

    Google Scholar 

  • Cropper WP, Ewel KC &Raich JW (1985) The measurement of soil CO2 evolution in situ. Pedobiologia 28: 35-40

    Google Scholar 

  • Cubasch U, Hasselmann K, Höck H, Maier-Reimer E, Mikolajewicz U, Santer B &Sausen R (1992) Time-dependent greenhouse warming computations with a coupled ocean-atmosphere model. Climate Dynamics 8: 55-69

    Google Scholar 

  • Dilly O, Mogge B, Kutsch WL, Kappen L &Munch JC (this issue) Aspects of carbon and nitrogen cycling in soils of the Bornhöved Lake Distict. I. Microbial characteristics and emissions of carbon dioxide and nitrous oxide of arable and grassland soils. Biogeochemistry (in press)

  • Edwards NT &Sollins P (1973) Continuous measurements of carbon dioxide evolution from partitioned forest floor components. Ecology 54: 406-412

    Google Scholar 

  • Haber W (1958) Ökologische Untersuchung der Bodenatmung. Flora 146: 109-156

    Google Scholar 

  • Hall AJ, Connor DJ &Whitfield DM(1990) Root respiration during grain filling in sunflower: The effects of water stress. Plant and Soil 121: 57-66

    Google Scholar 

  • Hansen S, Jensen HE, Nielsen NE &Svendsen H (1990) DAISY-Soil Plant Atmosphere System Model. Miljöministeriet Miljöstyrelsen, Kopenhagen

    Google Scholar 

  • Hoffmann F (1993) Die Ceres-Modelle-Übersicht, Weiterentwicklungen, Erfahrungen. In: Reiner L, Geidel H &Mangstl A (Eds) Agrarinformatik 24 (pp 139-150)

  • Hollwurtel E &Beinhauer R (1995) Klimaszenarien. EcoSys 2: 17-26, Kiel

    Google Scholar 

  • Humfeld H (1930) A method for measuring carbon dioxide evolution from soil. Soil Science 30: 1-9

    Google Scholar 

  • Jenkinson DS, Adams DE &Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351: 304-306

    Google Scholar 

  • Kappen L, Kutsch WL, Müller F &Eschenbach C (in press) Hierarchical process interactions in the terrestrial carbon cycle-a comparison between forest and crop field. In: Beese &Hantschel (Eds) Processes in Managed Ecosystems: Spatial and Temporal Variability. Ecological Studies, Springer, Berlin, Heidelberg, New York

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of globalwarming on soil organic C storage. SoilBiol.Biochem. 27: 753-760

    Google Scholar 

  • Koch GW &Mooney HA (Eds) (1996) Carbon Dioxide and Terrestrial Ecosystems. Academic Press, Oxford

    Google Scholar 

  • Koepf H (1953) Die Verwendung des URAS für die kontinuierliche Registrierung der Bodenatmung im Freiland. Landwirtschaftliche Forschung 5: 54-62

    Google Scholar 

  • Koepf H (1954) Untersuchungen über die biologische Aktivität des Bodens. Teil I: Atmungskurven des Bodens und Fermentaktivität des Bodens. Z. f. Acker-und Pflanzenbau 98(3): 289-312

    Google Scholar 

  • Kreyszik E (1982) Statistische Methoden und ihre Anwendungen, Vandenhoeck &Ruprecht, G¨ottingen

    Google Scholar 

  • Krzysch G (1964) Zur Beeinflussung der Bodenatmung durch langjährige Düngungs-und Bodenbearbeitungsmaßnahmen. Z. f. Acker-und Pflanzenbau 120: 339-368

    Google Scholar 

  • Kutsch W (1996) Untersuchungen zur Bodenatmung zweier Ackerstandorte im Bereich der Bornhöveder Seenkette. EcoSys, Kiel, Suppl. 16

  • Monteith JL, Szeicz G &Yabuki K (1964) Crop photosynthesis and the flux of carbon dioxide below the canopy. Journal of Applied Ecology 1: 321-337

    Google Scholar 

  • O'Neill EG (1994) Responses of soil biota to elevated atmospheric carbon dioxide. Plant and Soil 165: 55-65

    Google Scholar 

  • Orchard VA &Cook FJ (1983) Relationship between soil respiration and soil moisture. Soil Biol. Biochem. 15(4): 447-453

    Google Scholar 

  • Porka, OH (1931) Über eine neue Methode zur Bestimmung der Bodenatmung. Ann. Soc. Zool. Bot. Fenn. 15: 101-108

    Google Scholar 

  • Rochette P, Desjardins RL &Pattey E (1991) Spatial and temporal variability of soil respiration in agricultural fields. Can. J. Soil. Sci. 71: 189-196

    Google Scholar 

  • Schneider ED &Kay JJ (1994) Life as a manifestation of the second law of thermodynamics. Mathl. Comput. Modelling 19: 25-48

    Google Scholar 

  • Tardieu F (1988) Analysis of the spatial variability of maize root density. Plant and Soil 107: 259-266

    Google Scholar 

  • Wynn-Williams DD (1982) Simulation of seasonal changes in microbial activity of maritime antarctic peat. Soil Biol. Biochem. 14(1): 1-12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WERNER L. KUTSCH*.

Rights and permissions

Reprints and permissions

About this article

Cite this article

KUTSCH*, W.L., KAPPEN, L. Aspects of carbon and nitrogen cycling in soils of the Bornhöved Lake district II. Modelling the influence of temperature increase on soil respiration and organic carbon content in arable soils under different managements. Biogeochemistry 39, 207–224 (1997). https://doi.org/10.1023/A:1005859629197

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005859629197

Navigation