Abstract
A short review about nonassociative algebraic systems (mainly nonassociative algebras) and their physical applications is presented. We begin with some motivations, then we give a brief historical overview about the formation and development of the concept of hypercomplex number system and about some earlier applications. The main directions discussed are the octonionic, Lie-admissible, and quasigroup approaches. Also, some problems investigated in Tartu, the octonionic approach, Moufang–Mal'tsev symmetry, and associator quantization are discussed. This review does not pretend to be complete as the accent is placed on ideas and not on the techniques, also the references are quite sporadic (there are many authors and results mentioned in the text without references).
This is a preview of subscription content, access via your institution.
References
Akivis, M. A.: About geodesic loops and local ternary systems of the affinely connected spaces, Sibirsk. Mat. Zh. 19 (1978), 243-253 (in Russian).
Albert, A. A.: Structure of Algebras, Amer. Math. Soc., Providence, RI, 1939.
Albert, A. A.: Power-associativity of rings, Trans. Amer. Math. Soc. 64 (1948), 552-593.
Asano, H.: On a class of nonassociative algebras, Yokohama Math. J. 20 (1972), 143-149.
Batalin, I. A.: Quasigroup construction and first class constraints, J. Math. Phys. 22 (1981), 1837-1856.
Batalin, I. A. and Vilkovisky, G. A.: Existence theorem for gauge algebra, J. Math. Phys. 27 (1985), 172-184.
Benkart, G. M. and Osborn, J. M.: Flexible Lie-admissible algebras, J. Algebra 7 (1981), 11-31.
Benkart, G. M.: Power-associative Lie-admissible algebras, J. Algebra 90 (1984), 37-58.
Berezin, A. V., Kurochkin, Yu. A. and Tolkachev, E. A.: Quaternions in Relativistic Physics, Nauka i Tehnika, Minsk (Belarus), 1989 (in Russian).
Birkhoff, G. and von Neumann, J.: The logic of quantum mechanics, Ann. of Math. (USA) 37 (1936), 823-843.
Bohm, A., Ne'eman, Y. and Barut, A. O.: Dynamical Groups and Spectrum-Generating Algebras I, II, World Scientific, Singapore, 1988.
Braun, H. and Koecher, M.: Jordan-Algebren, Springer, New York, 1966.
Bruck, R. H.: A Survey of Binary Systems, Springer, New York, 1958.
Cayley, A.: On Jacobi's elliptic functions, in reply to the Rev. Brice Bronwin; and on quaternions, Philos. Mag. (3) 26 (1845), 210-213.
Conway, J. H. and Sloane, N. J. A.: Sphere Packings, Lattices and Groups, Springer, New York, 1988.
Dickson, L. E.: On quaternions and their generalization and the history of the eight square theorem, Ann. of Math. (USA) 20 (1919), 155-171.
Duff, M. J., Nilsson, B. E. W. and Pope, C. N.: Kaluza-Klein supergravity, Phys. Rep. 130 (1986), 1-142.
Dyson, F. J.: Mathematics in the physical sciences, Sci. Amer. 211 (1964), 128-146.
Eilenberg, S.: Extension of general algebras, Ann. Soc. Polon. Math. 21 (1948), 125-134.
Gell-Mann, M. and Ne'eman, Y. (eds.): The Eightfold Way, Benjamin, New York, 1964.
Goldstine, H. H. and Horwitz, L. P.: Hilbert space with nonassociative scalars I, II, Math. of Ann. 154 (1964), 1-27; 164 (1966), 291-316.
Graves, J. T.: On a connection between the general theory of normal couples and the theory of complete quadratic functions of two variables, Philos. Mag. (3) 26 (1845), 315-320.
Green, M. B., Schwarz, J. H. and Witten, E.: Superstring Theory I, II, Cambridge Univ. Press, 1987.
GĂĽnaydin, M. and GĂĽrsey, F.: Quark structure and octonions, J. Math. Phys. 14 (1973), 1615-1667.
GĂĽnaydin, M., Piron, C. and Ruegg, H.: Moufang plane and octonionic quantum mechanics, Comm. Math. Phys. 61 (1978), 69-85.
Gustafson, W. H.: The history of algebras and their representations, in Lecture Notes in Math. 944, Springer, New York, 1982, pp. 1-28.
Houtappel, R. M. F., van Dam, H. and Wigner, E.: The conceptual basis and use of the geometric invariance principles, Rev. Modern Phys. 37 (1965), 595-632.
Jacobson, N.: Lie and Jordan triple systems, Amer. J. Math. 71 (1949), 149-170.
Jacobson, N.: Structure and Representations of Jordan Algebras, Amer. Math. Soc., Providence, RI, 1968.
Jauch, J. M.: Foundations of Quantum Mechanics, Addison-Wesley, Reading, Mass., 1968.
Jordan, P.: Über eine Klasse nichtassoziativer hyperkomplexer Algebren, Göttingen Nachr. (1932), 569-575.
Jordan, P.: Ăśber die Multiplikation quantenmechanischen Grossen, Z. Phys. 80 (1933), 285-291.
Jordan, P.: Über Verallgemeinerungs-möglichkeiten des Formalismus der Quantenmechanik, Göttingen Nachr. (1933), 209-217.
Jordan, P.: Über das verhältnis der Theorie der Elementarlange zur Quantentheorie I, II, Comm. Math. Phys. 9 (1968), 279-292; 11 (1968), 293-296.
Jordan, P.: Zur Frage einer physikalischen Verwendbarkeit nichtassoziativer Algebren, Z. Phys. 229 (1969), 193-198.
Jordan, P., von Neumann, J. and Wigner, E.: On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. (USA) 35 (1934), 29-64.
Kadeishvili, J. D.: Santilli's Isotopies of Contemporary Algebras, Geometries and Relativities, Hadronic Press, Palm Harbor (Florida, USA), 1992.
Klein, F.: Vergleichende Betrachtungen über neuere geometrische Forschungen, Program zu Eintritt in die philosophische Facultät und den Senat der Universität zu Erlangen, Deichert, Erlangen, 1872.
Koecher, M.: Was sind und was sollen Algebren, Math. Phys. Semesterber. 23 (1976), 174-191.
Kuusk, P. and Paal, E.: Geodesic multiplication as a tool for classical and quantum gravity, Trans. Tallinn Tech. Univ. 733 (1992), 33-42.
Kuz'min, E. N.: Mal'tsev algebras an their representations, Algebra i Logika 7 (1968), 48-69.
Langacker, P.: Grand unified theories and proton decay, Phys. Rep. 72 (1981), 185-385.
Lister, W. G.: Ternary rings, Trans. Amer. Math. Soc. 154 (1971), 37-65.
Lõhmus, J., Paal, E., and Sorgsepp, L.: On currents and symmetries associated with Mal'tsev algebras, Preprint F-50, Acad. Sci. Estonian SSR, Sect. Phys. & Astronomy, Tartu, 1989.
Lõhmus, J., Paal, E., and Sorgsepp, L.: Nonassociativity in mathematics and physics, in J. Lõhmus and P. Kuusk (eds), Quasigroups and Nonassociative Algebras in Physics, Trans. Inst. Phys. Estonian Acad. Sci. 66, Tartu, 1990, pp. 8-22 (in Russian).
Lõhmus, J., Paal, E., and Sorgsepp, L.: Moufang symmetries and conservation laws, Proc. Estonian Acad. Sci., Phys.-Math. 41 (1992), 133-141.
Lõhmus, J. and Sorgsepp, L.: About nonassociative extension of matrix structure of Dirac equation, in Group-Theoretical Methods in Physics, Proc. 3rd Internat. Sem. Yurmala, Riga, Latvia, 22-24 May, 1985, vol. 2, Nauka, Moscow, 1986, pp. 603-608.
Lõhmus, J. and Sorgsepp, L.: About the hypercomplex formulation of the self-duality condition in dimensions 4 and 8, in I. Ots and V. Rosenhaus (eds), Fundamental Fields, Trans. Inst. Phys. Estonian Acad. Sci. 64, Tartu, 1989, pp. 125-139.
Lõhmus, J. and Sorgsepp, L.: Aspects of self-duality in hypercomplex formalism, in J. Lõhmus and P. Kuusk (eds), Quasigroups and Nonassociative Algebras in Physics, Trans. Inst. Phys. Estonian Acad. Sci. 66, Tartu, 1990, pp. 179-197.
Lõhmus, J. and Sorgsepp, L.: Ternary algebra of sedenions, in J. Lõhmus and P. Kuusk (eds), Quasigroups and Nonassociative Algebras in Physics, Trans. Inst. Phys. Estonian Acad. Sci. 66, Tartu, 1990, pp. 169-178.
Lõhmus, J. and Sorgsepp, L.: Nonassociativity as a fundamental principle, Ann. Estonian Phys. Soc. (1991), 47-57 (in Estonian).
Lõhmus, J. and Sorgsepp, L.: About associator quantization, Ann. Estonian Phys. Soc. (1992), 70-76 (in Estonian).
MacFarlane, A.: Bibliography of Quaternions and Allied Systems of Mathematics, Dublin, 1904.
Mal'tsev, A. I.: Analytical loops, Matem. Sb. 36 (1955), 569-576 (in Russian).
McCrimmon, K.: Jordan algebras and their applications, Bull. Amer. Math. Soc. 84 (1978), 612-617.
McCrimmon, K.: The Russian revolution in Jordan algebras, Algebras, Groups Geom. 1 (1984), 1-61.
Molien, T.: Ueber Süsteme höherer complexer Zahlen, Doctordissertation, Universität Dorpat (Tartu), 1892.
Moufang, R.: Zur Struktur von Alternativkörper, Math. Ann. 110 (1934), 416-430.
Myung, H.-C.: Lie Algebras and Flexible Lie-Admissible Algebras, Hadronic Press, Nonantum, 1982.
Myung, H.-C.: A Malcev-admissible mutation of an alternative algebra, Bull. Korean Math. Soc. 20, 37-43.
Myung, H.-C.: Malcev-Admissible Algebras, Birkhäuser, Basel, 1986.
Neher, E.: On the classification of Lie and Jordan triple systems, Comm. Algebra 13 (1985), 2615-2667.
Nesterov, A. I.: Quasigroup ideas in physics, in J. Lõhmus and P. Kuusk (eds), Quasigroups and Nonassociative Algebras in Physics, Trans. Inst. Phys. Estonian Acad. Sci. 66, Tartu, 1990, pp. 107-120.
Osborn, J. M.: What are nonassociative algebras?, Algebras, Groups Geom. 3 (1986), 264-285.
Paal, E.: An introduction to the Moufang-symmetry, Preprint F-42, Institute of Physics, Acad. Sci. Estonian SSR, Tartu, 1987 (in Russian).
Paal, E.: Moufang-transformations, in P. Kuusk and J. Lõhmus (eds), Fundamental Interactions, Trans. Inst. Phys. Acad. Sci. Estonian SSR 62, Tartu, 1987, pp. 142-158 (in Russian).
Paal, E.: Analytic Moufang-transformations, Preprint F-46, Institute of Physics, Acad. Sci. Estonian SSR, Tartu, 1988.
Paal, E.: About bicombinatorial representation of Moufang loops, in I. Ots and V. Rosenhaus (eds), Fundamental Fields, Trans. Inst. Phys. Estonian Acad. Sci. 64, Tartu, 1989, pp. 104- 124.
Paal, E.: Birepresentations of derivative Moufang loops, Proc. Estonian Acad. Sci., Phys.-Math. 40 (1991), 105-111.
Paal, E.: Moufang-Mal'tsev symmetry, Proc. Estonian Acad. Sci., Phys.-Math. 42 (1993), 157-165.
Peirce, B.: Linear associative algebra, Amer. J. Math. 4 (1881), 97-229.
Piron, C.: Foundations of Quantum Physics, Addison-Wesley, Reading, Mass., 1976.
Ruegg, H.: Octonionic quark confinement, Acta Phys. Polon. B 9 (1978), 1037-1050.
Sabinin, L. V.: Odules as a new approach to the geometry with connection, Dokl. Akad. Nauk SSSR 233 (1977), 800-803 (in Russian).
Sabinin, L. V.: Methods of nonassociative algebra in differential geometry, Addendum to the Russian translation of S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Nauka, Moscow, 1981, vol. 1, pp. 293-339.
Sabinin, L. V.: Quasigroups, geometry, and physics, in J. Lõhmus and P. Kuusk (eds), Quasigroups and Nonassociative Algebras in Physics, Trans. Inst. Phys. Estonian Acad. Sci. 66, Tartu, 1990, pp. 24-54.
Sakharov, A. D.: Vacuum quantum fluctuations in curved space and the theory of gravitation, Dokl. Akad. Nauk SSSR 177 (1967), 70-71 (in Russian).
Santilli, R. M.: Imbedding of Lie algebras in nonassociative structures, Nuovo Cimento A 51 (1967), 570-576.
Santilli, R. M.: An introduction to Lie-admissible algebras, Nuovo Cimento, Suppl. 6 (1968), 1225-1249.
Santilli, R. M.: Isotopic Generalizations of Galilei and Einstein's Relativities. I. Mathematical Foundations; II. Classical Isotopies, Hadronic Press, Palm Harbor, 1981, 1991.
Santilli, R. M.: Foundations of Theoretical Mechanics. I. The Inverse Problem in Newtonian Mechanics; II. Hamiltonian Mechanics, Springer, New York, 1978, 1982.
Schafer, R. D.: Introduction to Nonassociative Algebras, Academic Press, 1966.
Schafer, R. D.: Generalized standard algebras, J. Algebra 12 (1969), 386-417.
Shaw, J. B.: Synopsis of linear associative algebras: a report on its natural development and results reached up to the present time, Carnegie Institute, Washington, 1907.
Slansky, R.: Group theory for unified model building, Phys. Rep. 79 (1981), 1-128.
Solodovnikova, E. P., Tavkhelidze, A. N. and Khrustalev, O. A.: Bogolyubov transformation in the strong coupling theory, II, Preprint P-6115, JINR, Dubna, 1971 (in Russian).
Sommerfeld, A.: Atombau und Spektrallinien, II, Friedr. Vieweg & Sohn, Braunschweig, 1951 (Ch. 4 and Math. Addendum 13).
Sorgsepp, L. and Lõhmus, J.: About nonassociativity in physics and Cayley-Graves' octonions, Hadronic J. 2 (1979), 1388-1459.
Sorgsepp, L. and Lõhmus, J.: Binary and ternary sedenions, Hadronic J. 4 (1981), 327-353.
Sorgsepp, L. and Lõhmus, J.: Dirac equation in the regular bimodule representation of octonions, in: P. Kuusk and J. Lõhmus (eds), Fundamental Interactions, Trans. Inst. Phys. Acad. Sci. Estonian SSR 62, Tartu, 1987, pp. 159-173.
Sorgsepp, L. and Lõhmus, J.: Associator quantization and the deep structure of matter, in Trans. Tallinn Tech. Univ. No. 733, Tallinn, 1992, pp. 85-92.
Sorgsepp, L. and Lõhmus, J.: Fundamental fermions in a nonassociative model of matter, in I. Ots and L. Palgi (eds), Proc. 2nd Tallinn Symposium on Neutrino Physics, held at Lohusalu, Tallinn, Estonia, Oct. 5-8, 1993, Estonian Acad. Sci., Inst. of Physics, Tartu, 1994, pp. 181-188.
Study, E. and Cartan, E.: Nombres complexes, in Encycl. Sci. Math. Pures Appl. I. Vol. 1. Arithmétique, Gauthier-Villars & Teubner, Paris-Liepzig, 1904, pp. 324-468.
Tamas, V.: Properties of a non-associative ternary structure, An. Sti. Univ. Iasi (Suppl.) 31 (1985), 51-53.
Tomber, M. L.: A short history of nonassociative algebras, Hadronic J. 2 (1979), 507-725.
Tomber, M. L., Norris, D. M., Reynolds, M., Balzer, C., Trebilcott, K., Terry, T., Coryell, H. and Ordway, J.: A nonassociative algebra bibliography, Hadronic J. 3 (1979), 507-725.
Tomber, M. L., Norris, D. M. and Smith, C. L.: A subject index of works relating to nonassociative algebras, Hadronic J. 4 (1981), 1444-1625.
Tomber, M. L., Smith, C. L., Norris, D. M. and Welk, R.: Addenda to 'A nonassociative algebra bibliography', Hadronic J. 4 (1981), 1328-1443.
Tomber, M. L.: The history and methods of Lie-admissible algebras, Hadronic J. 5 (1982), 360-430.
van der Waerden, B. L.: A History of Algebra from al-Khwarizmi to Emmy Noether, Springer, New York, 1985.
van Nieuwenhuisen, P.: Supergravity, Phys. Rep. 68 (1981), 89-398.
Wedderburn, J. H.: On hypercomplex numbers, Proc. London Math. Soc. (2) 6 (1907), 77-118.
West, P.: Introduction to Supersymmetry and Supergravity, World Scientific, Singapore, 1986.
Wörz-Busekros, A.: Algebras in Genetics, Lecture Notes in Biomath. 36, Sringer, New York, 1980.
Yamaguti, K.: On the theory of Malcev algebras, Kumamoto J. Sci. A 6 (1963), 9-45.
Zhevlakov, K. A., Slin'ko, A. M., Shestakov, I. P. and Shirshov, A. I.: Nearly Associative Rings, Nauka, Moscow, 1978 (in Russian).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Lõhmus, J., Paal, E. & Sorgsepp, L. About Nonassociativity in Mathematics and Physics. Acta Applicandae Mathematicae 50, 3–31 (1998). https://doi.org/10.1023/A:1005854831381
Issue Date:
DOI: https://doi.org/10.1023/A:1005854831381