Journal of Atmospheric Chemistry

, Volume 27, Issue 3, pp 291–318 | Cite as

Emissions of Volatile Organic Compounds from Sunflower and Beech: Dependence on Temperature and Light Intensity

  • G. Schuh
  • A. C. Heiden
  • Th. Hoffmann
  • J. Kahl
  • P. Rockel
  • J. Rudolph
  • J. Wildt


Emissions of volatile organic compounds (VOCs) from sunflower (Helianthus annuus L. cv. giganteus) were measured in a continuously stirred tank reactor. The compounds predominantly emitted from sunflower were: isoprene, the monoterpenes α-pinene, β-pinene, sabinene, 3-carene and limonene, an oxygenated terpene, not positively identified so far and the sesquiterpene β-caryophyllene. Emission rates ranged from 0.8 x 10−16 to 4.3 x 10 −15 mol cm−2 s−1 at a temperature of 25°C and at a light intensity of 820 µEm−2 s−1. A dependence of the emission rates on temperature as well as on light intensity was observed. The emission rates of α-pinene, sabinene and thujene from beech (Fagus sylvatica L.) were also affected by temperature as well as by light intensity. Our results suggest that an emission algorithm for all compounds emitted from sunflower and beech has to consider temperature and light intensity simultaneously. The observations strongly indicate that the emissions of VOCs from sunflower and beech are in part closely coupled to the rate of biosynthesis and in part originate from diffusion out of pools. The emission rates can be described by an algorithm that combines the model given by Tingey and coworkers with the algorithm given by Guenther and coworkers after slight modification.

emission algorithm isoprene monoterpene sesquiterpene sunflower beech 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arey, J., Winer, A. M., Atkinson, R., Aschmann, S. M., Long, W. D., and Morrison, C. L., 1991: The emission of (Z)-3-hexen-1-ole, (Z)-3-hexenyl Acetate and other oxygenated hydrocarbons from agricultural plant species, Atmos.Environ. 25A, 1063–1075.Google Scholar
  2. Bertin, N., Staudt, M., Hansen, U., Seufert, G., Ciccioli, P., Foster, P., Fugit, J. L., and Torres, L., 1997: The BEMA-project: Diurnal and seasonal course of monoterpene emissions from Quercus ilex (L.) under natural conditions – application of light and temperature algorithms, Atmos.Environ., in press.Google Scholar
  3. Caemmerer von, S. and Farquhar, G. D., 1981: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves, Planta 153, 376–387.Google Scholar
  4. Delwiche, C. F. and Sharkey, T. D., 1993: Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves, Plant, Cell Environ. 16, 587–591.Google Scholar
  5. Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P. R., 1992: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biochem.Cycles 6(4), 389–430.Google Scholar
  6. Gleizes, M., Pauly, G., Bernard-Dagan, C., and Jaques, R., 1980: Effects of light on terpene hydrocarbon synthesis in Pinus Pinaster, Physiol.Plant. 50, 16–20.Google Scholar
  7. Goldan, P. D., Kuster, W. C., and Fehsenfeld, F. C., 1995: Hydrocarbon measurements in the Southeastern United States: The Rural Oxidants in the Southern Environment (ROSE) Program 1990, J.Geophys.Res. 100(D12), 25945–25963.Google Scholar
  8. Guenther, A. B., Monson, R. K., and Fall, R., 1991: Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development, J.Geophys.Res. 96, 10799–10808.Google Scholar
  9. Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K., and Fall, R., 1993: Isoprene and monoterpene emission rate variability: Model evaluation and sensitivity analyses, J.Geophys. Res. 98, 12609–12617.Google Scholar
  10. Hoffmann, T., 1995: An adsorptive preconcentration technique including oxidant scavenging for the measurement of reactive natural hydrocarbons in ambient air, Fres.J.Anal.Chem. 351, 41–47.Google Scholar
  11. Isidorov, V. A., Zenkevich, I. G., and Ioffe, B. V., 1985: Volatile organic compounds in the atmosphere of forests, Atmos.Environ. 19, 1–8.Google Scholar
  12. Janson, R., 1993: Monoterpene emissions from Scots Pine and Norwegian Spruce, J.Geophys.Res. 98(D2), 2839–2850.Google Scholar
  13. Kahl, J., Hoffmann, T., and Klockow, D., 1997: Emission of biogenic hydrocarbons from plants: Characterization and application of a plant enclosure chamber, Proc.Eurotrac Symp.1996, in press.Google Scholar
  14. Khalil, M. A. K. and Rasmussen, R. A., 1992: Forest hydrocarbon emissions: Relationships between fluxes and ambient concentrations, J.Air Waste Manage.Assoc. 42, 810–813.Google Scholar
  15. Kesselmeier, J., Schäfer, L., Ciccioli, P., Brancaleoni, E., Cecinato, A., Frattoni, M., Foster, P., Jacob, V., Denis, J., Fugit, J. L., Dutaur, L., Torres, L., 1996: Emission of monoterpenes and isoprene from a mediterranean oak species Quercus ilex L. measured within the BEMA (biogenic emissions in the mediterranean area) project, Atmos.Environ. 30, 1841–1850.Google Scholar
  16. König, G., Brunda, M., Puxbaum, H., and Rudolph, J., 1995: Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected mid-European agricultural and natural plant species, Atmos.Environ. 29, 861–874.Google Scholar
  17. Lerdau, M., Dilts, S. B., Westberg, H., Lamb, B. A., Allwine, E. J., 1994: Monoterpene emission from Ponderosa Pine, J.Geophys.Res. 99(D8), 16609–16615.Google Scholar
  18. McGarvey, D. J. and Croteau, R., 1995: Terpenoid metabolism, The Plant Cell 7, 1015–1026.Google Scholar
  19. Mohr, H. and Schopfer, P., 1985: Lehrbuch der Pflanzenphysiologie, Springer-Verlag, Berlin, p. 119.Google Scholar
  20. Neubert, A., Kley, D., Wildt, J., Segschneider, H.-J., and Förstel, H., 1993: Uptake of NO, NO2, and O3 by sunflower (Helianthus annuus L.) and tobacco plants (Nicotiana tabacum L.): dependence on stomatal conductivity, Atmos.Environ. 27A, 2137–2145.Google Scholar
  21. Sharkey, D. T., Loreto, F., and Delwiche, C. F., 1991: The biochemistry of isoprene emission from leaves during photosynthesis, in T. D. Sharkey, E. A. Holland, H. A. Mooney (eds), Trace Gas Emissions by Plants, Academic Press, New York, pp. 153–184.Google Scholar
  22. Staudt, M. and Seufert, G., 1995: Light dependent emission of monoterpenes by Holm Oak (Quercus ilex L.), Naturwissenschaften 82, 89–92.Google Scholar
  23. Street, R. A., Duckham, S. C., Boissard, C., and Hewitt, C. N., 1994: Biogenic terpenoid emissions from vegetation in Europe – A contribution to subproject BIATEX, in P. M. Borrell et al. (eds), Proceedings of EUROTRACSymposium' 94, Academic Publishing, The Hague, The Netherlands, pp. 480–484.Google Scholar
  24. Tingey, D. T., Manning, M., Grothaus, L.C., and Burns, W. F., 1979: Influence of light and temperature on isoprene emission rates from live oak, Physiol.Plant. 47, 112–118.Google Scholar
  25. Tingey, D. T., Manning, M., Grothaus, L.C., and Burns, W. F., 1980: Influence of light and temperature on monoterpene emission rates from Slash Pine, Plant Physiol. 65, 797–801.Google Scholar
  26. Tingey, D. T., Turner, D. P., Weber, J. A., 1991: Factors controlling the emissions of monoterpenes and other volatile organic compounds, in T. D. Sharkey, E. A. Holland, H. A. Mooney (eds), Trace Gas Emissions by Plants, Academic Press, New York, pp. 93–119.Google Scholar
  27. Wildt, J., Kley, D., Rockel, A., Rockel, P., and Segschneider, H. J., 1997: Emission of NO from several higher plant species, J.Geophys.Res. 102, 5919–5927.Google Scholar
  28. Winer, A. M., Arey, J., Atkinson, R., Aschmann, S. M., Long, W. D., Morrison, C. L., Olszyk, M., 1992: Emission rates of organics from vegetation in California's Central Valley, Atmos.Environ. 26A, 2647–2659.Google Scholar
  29. Yokouchi, Y. and Ambe, Y., 1984: Factors affecting the emission of monoterpenes from red pine (Pinus densiflora), Plant Physiol. 75, 1009–1012.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • G. Schuh
  • A. C. Heiden
  • Th. Hoffmann
  • J. Kahl
  • P. Rockel
  • J. Rudolph
  • J. Wildt

There are no affiliations available

Personalised recommendations