Skip to main content
Log in

A Re-Evaluation of Sulfur Budgets, Lifetimes, and Scavenging Ratios for Eastern North America

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Lifetimes, scavenging ratios, andbudgets describe the cycling of atmosphericconstituents and are often used in formulating airpollution control strategies. Most previous studiesof sulfur lifetimes, budgets, and scavenging ratioshave been based on limited observational data or datafrom highly simplified models. The Regional AcidDeposition Model (RADM2.61) shows some skill inpredicting atmospheric mixing ratios of acidicmaterials and other related trace constituents andacid deposition patterns in North America, and so,analysis of its established, theoretical, databaseserves as a counterpoint to previous studies of sulfurbudgets, lifetimes, and scavenging ratios. The annualbudget shows that the net transport (outflow minusinflow) of sulfur compounds out of eastern NorthAmerica is equal to the total deposition within thedomain. Of the total deposition, 63% is from wetdeposition and 37% is from dry deposition. Theannual average lifetime of sulfur dioxide (38 hours),estimated by the turnover time, is limited by aqueousconversion, while that for sulfate aerosols (54 hours)is limited by their removal in precipitation. Theannual average lifetime of sulfur in this domain isslightly more than three days. Episodic lifetimes andbudgets, based on particular synoptic situations, showlarge variations around the annual values. Episodicprecipitation scavenging ratios exhibit similarvariability and are used to offer explanations ofseveral potential biases found in the wet sulfurdeposition amounts as predicted by the EMEP sulfurtransport model and other published results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcamo, J., Shaw, R., and Hordijk, L. (eds.), 1990: The RAINS Model of Acidification: Science and Strategies in Europe, Kluwer Academic Publishers, Boston, 402 pp.

    Google Scholar 

  • Alkezweeney, A. J. and Powell, D. C., 1977: Estimation of transformation rate of SO2 to SO4 from atmospheric concentration data, Atmos. Environ. 11, 179–182.

    Google Scholar 

  • Anthes, R.A. and Warner, T. T., 1978: Development of hydrodynamic models suitable for air pollution and other mesometeorological studies, Mon. Weather Rev. 106, 1045–1078.

    Google Scholar 

  • Anthes, R.A., Hsie, E.Y., and Kuo, Y. H., 1987: Description of the Penn State/NCAR Mesoscale model version 4 (MM4),NCAR Technical Note, NCAR/TN-282+STR, National Center for Atmospheric Research, Boulder, CO, 66 pp.

    Google Scholar 

  • Balko, J. A. and Peters, L. K., 1983: A modeling study of SOx–NOx-hydrocarbon plumes and their transport to the background troposphere, Atmos. Environ. 17, 1965–1978.

    Google Scholar 

  • Bamber, D. J., Clark, P. A., Glover, G.M., Healey, P. G. W, Kallend, A. S., Marsh, A. R. W., Tuck, A. F., and Vaughan, G., 1984: Air sampling flights round the British Isles at low altitudes: SO2 oxidation and removal rates, Atmos. Environ . 18, 1777–1790.

    Google Scholar 

  • Barrie, L. A., 1981: The prediction of rain acidity and SO2 scavenging in eastern North America, Atmos. Environ. 15, 31–41.

    Google Scholar 

  • Barrie, L. A., 1985: Scavenging ratios, wet deposition, and in-cloud oxidation: An application to the oxides of sulphur and nitrogen, J. Geophys. Res. 90, 5789–5799.

    Google Scholar 

  • Barrie, L. A. and Hales, J. M., 1984: The spatial distributions of precipitation acidity and major ion wet deposition in North America during 1980, Tellus 36B, 333–355.

    Google Scholar 

  • Barrie, L. A. and Hoff, R. M., 1984: The oxidation rate and residence time of sulphur dioxide in the Arctic atmosphere, Atmos. Environ. 18, 2711–2722.

    Google Scholar 

  • Berge, E., 1993: Coupling of wet scavenging of sulfur to clouds in a numerical weather prediction model, Tellus 45B, 1–22.

    Google Scholar 

  • Berge, E., 1994: A comparison of results from the EMEP/MSC-W acid deposition model and the EMEP monitoring sites during the four seasons of 1989, EMEP/MSC-W/CCC, Note 1/94, The Norwegian Meteorological Institute, Oslo, Norway.

    Google Scholar 

  • Bolin, B. and Rodhe, H., 1973: A note on the concepts of age distribution and transit time in natural reservoirs, Tellus XXV, 58–62.

    Google Scholar 

  • Brook, J. R., Samson, P. J., and Sillman, S., 1995a: Aggregation of selected three-day periods to estimate annual and seasonal wet deposition totals for sulfate, nitrate and acidity: I. a synoptic and chemical climatology for eastern North America, J. Appl. Meteor. 3 4, 297–325.

    Google Scholar 

  • Brook, J. R., Samson, P. J., and Sillman, S., 1995b: Aggregation of selected three-day periods to estimate annual and seasonal wet deposition totals for sulfate, nitrate and acidity: II. selection of events, deposition totals and source-receptor relationships, J. Appl. Meteor. 34, 326–339.

    Google Scholar 

  • Brost, R. A., Chatfield, R. B., Greenberg, J. P., Haagenson, P. L., Heikes, B. G., Madronich, S., Ridley, B. A., and Zimmerman, P. R., 1988: Three-dimensional modeling of transport of chemical species from continents to the Atlantic Ocean, Tellus 40B, 358–379.

    Google Scholar 

  • Cadle, S. H., VandeKopple, R. V., Mulawa, P. A., and Dasch, J. M., 1990: Ambient concentrations, scavenging ratios, and source regions of acid related compounds and trace metals during winter in northern Michigan, Atmos. Environ. 24A, 2981–2989.

    Google Scholar 

  • Chan, W. H. and Chung, D. H. S., 1986: Regional-scale precipitation scavenging of SO2; SO4, NO3, and HNO3, Atmos. Environ. 20, 1397–1402.

    Google Scholar 

  • Chang, J. S., Binkowski, F. S., Lansford, H. H., Madronich, S., Middleton, P. B., Pleim, J. E., Seamon, N. L., Stauffer, D. R., Stockwell, W. R., and Walcek, C. J., 1990: The regional acid deposition model and engineering model, NAPAP SOS/T report 4, in: National Acid Precipitation Assessment Program: State of Science and Technology, Vol.1, National Acid Precipitation Assessment Program, Washington, D.C.

    Google Scholar 

  • Chang, J. S., Brost, R. A., Isaksen, I. S., Madronich, S., Middleton, P., Stockwell, W. R., and Walcek, C. J., 1987: A three dimensional Eulerian acid deposition model: physical concepts and formulation, J. Geophys. Res. 92, 14,681–14,700.

    Google Scholar 

  • Chang, T. Y., 1979: Estimate of the conversion of SO2 to SO4 from the Da Vinci flight data, Atmos. Environ. 13, 1663–1664.

    Google Scholar 

  • Dana, M. T., 1980: SO2 versus sulfate wet deposition in the eastern United States, J. Geophys Res. 85, 4475–4480.

    Google Scholar 

  • Davis, D., Heaps, D. W., Philen, D., and McGee, T., 1979: Boundary layer measurements of the OH radical in the vicinity of an isolated power plant plume: SO2 and NO2 chemical conversion times, Atmos. Environ. 13, 1197–1203.

    Google Scholar 

  • Deister, U., Neeb, R., Helas, G., and Warneck, P., 1986: Temperature dependence of the equilibrium CH2(OH)2 + HSO3 - = CH2(OH)SO3 - + H2O in aqueous solution, J. Phys. Chem. 90, 3213–3217.

    Google Scholar 

  • Dennis, R. L., McHenry, J. N., Barchet, W. R., Binkowski, F. S., and Byun, D. W., 1993: Correcting RADM’s sulfate underprediction: Discovery and correction of model errors and testing the corrections through comparisons against field data, Atmos. Environ. 27A, 975–997.

    Google Scholar 

  • Dennis, R. L., Barchet, W. R., Clark, T. L., and Seilkop, S. K., 1990: Evaluation of regional acidic deposition models (part I), NAPAP SOS/T report 5, in: National Acid Precipitation Assessment Program: State of Science and Technology , Vol. 1, National Acid Precipitation Assessment Program, Washington, D.C.

    Google Scholar 

  • Eliassen, A., 1978: The OECD study of long range transport of air pollutant: Long range transport modeling, Atmos. Environ. 12, 479–487.

    Google Scholar 

  • Eliassen, A. and Saltbones, J., 1975: Decay and transformation rates of SO2, as estimated from emission data, trajectories and measured air concentrations, Atmos. Environ. 9, 425–429.

    Google Scholar 

  • Eliassen, A. and Saltbones, J., 1983: Modeling of long-range transport of sulphur over Europe: A two-year model run and some model experiments, Atmos. Environ. 17, 1457–1473.

    Google Scholar 

  • Eriksson, E., 1963: The yearly circulation of sulfur in nature, J. Geophys. Res. 68, 4001–4008.

    Google Scholar 

  • Fay, J. A., Golomb, D., and Kumar, S., 1985: Source apportionment of wet sulfate deposition in eastern North America, Atmos. Environ. 19, 1773–1782.

    Google Scholar 

  • Fay, J. A., Kumar, S., and Golomb, D., 1986: Annual and semi-annual anthropogenic sulfur budget for eastern North America, Atmos. Environ. 20, 1497–1500.

    Google Scholar 

  • Fisher, B. E. A. and Callander, B. A., 1984: Mass balances of sulphur and nitrogen oxides over Great Britain, Atmos. Environ. 18, 1751–1757.

    Google Scholar 

  • Galloway, J. N. and Whelpdale, D.M., 1980: An atmospheric sulfur budget for eastern North America, Atmos. Environ. 14, 409–417

    Google Scholar 

  • Galloway, J. N. and Rodhe, H., 1991: Regional atmospheric budgets of S and N fluxes: How well can they be quantified?, Proc. R. Soc. Edinburgh 97B, 61–80.

    Google Scholar 

  • Galloway, J. N., Whelpdale, D. M., and Wolff, G. T., 1984: The flux of S and N eastward from North America, Atmos. Environ. 18 ,2595–2607.

    Google Scholar 

  • Galloway, J. N., Savoie, D. L., Keene, W. C., and Prospero, J. M., 1993: The temporal and spatial variability of scavenging ratios for nss sulfate, nitrate, methanesulfonate, sodiumin the atmosphere over the North Atlantic Ocean, Atmos. Environ. 27A, 235–250.

    Google Scholar 

  • Garland, J. A., 1978: Dry and wet removal of sulphur from the atmosphere, Atmos. Environ. 12, 349–362.

    Google Scholar 

  • Garland, J. A. and Branson, J. R., 1976: The mixing height and mass balance of SO2 in the atmosphere above Great Britain, Atmos. Environ. 10, 353–362.

    Google Scholar 

  • Gotaas, Y., 1982: Vertical distribution of sulphur in the atmosphere in a case of long range transport and the rate of transformation to sulphate, Atmos. Environ. 16, 1043–1046.

    Google Scholar 

  • Hansen, D. A., Barnes, M. H., Lusis, M., and Puckett, K. J., 1989: A North American field study to evaluate Eulerian models, in: H. van Dop (ed), Air Pollution Modeling and Its Application VII, Plenum Press, New York, pp. 297–306.

    Google Scholar 

  • Harrison, R. M. and Allen, A. G., 1991: Scavenging ratios and deposition of sulphur, nitrogen and chlorine species in eastern England, Atmos. Environ. 25A, 1719–1723.

    Google Scholar 

  • Hegg, D. A., 1985: The importance of liquid-phase oxidation of SO2 in the troposphere, J. Geophys. Res. 90, 3773–3779.

    Google Scholar 

  • Hegg, D. A., Rutledge, S. A., and Hobbs, P. V., 1984: A numerical model for sulfur chemistry in warm-frontal rainbands, J. Geophys. Res. 89, 7133–7147.

    Google Scholar 

  • Hegg, D. A., Rutledge, S. A., and Hobbs, P. V., 1986: A numerical model for sulfur and nitrogen scavenging in narrow cold-frontal rainbands 2. discussion of chemical fields, J. Geophys. Res. 91, 14,403–14,416.

    Google Scholar 

  • Henmi, T. and Reiter, E. R., 1978: Regional residence times of sulfur dioxide over the eastern United States, Atmos. Environ. 12, 1489–1495.

    Google Scholar 

  • Husain, L., Dutkiewicz, V. A., Hussain, M. M., Khwaja, H. A., Burkhard, E. G., Mehmood, G., Parekh, P. P., and Canelli, E., 1991: A study of heterogeneous oxidation of SO2 in summer clouds, J. Geophys. Res. 96, 18,789–18,805.

    Google Scholar 

  • Husain, L. and Dutkiewicz, V. A., 1992: Elemental tracers for the study of homogeneous gas phase oxidation of SO2 in the atmosphere, J. Geophys. Res. 97, 14,635–14,643.

    Google Scholar 

  • Husar, R. B., Patterson, D. E., Husar, J. D., and Gillani, N. V., 1978: Sulfur budget of a power plant plume, Atmos. Environ. 12, 549–568.

    Google Scholar 

  • Ito, T., Okita, T., Ikegami, M., Kanazawa, I., 1986: The characterization and distribution of aerosol and gaseous species in the winter monsoon over the Western Pacific Ocean, J. Atmos. Chem. 4, 401–411.

    Google Scholar 

  • Jakobsen, H. A., Jonson, J. E., and Berge, E., 1996: Transport and deposition calculations of sulphur and nitrogen compounds in Europe for 1992 in the 50 km grid by use of the multi-layer Eulerian model, EMEP/MSC-W Note 2/96, The Norwegian Meteorological Institute, Oslo.

    Google Scholar 

  • Jaffrezo, J., Colin, J., and Gros, J., 1990: Some physical factors influencing scavenging ratios, Atmos. Environ. 24A, 3073–3083.

    Google Scholar 

  • Kleinman, L. I., 1983: A regional scale modeling study of the sulfur oxides with a comparison to ambient and wet deposition monitoring data, Atmos. Environ. 17, 1107–1121.

    Google Scholar 

  • Langner, J. and Rodhe, H., 1991: A global three-dimensional model of the troposphere sulfur cycle, J. Atmos. Chem. 13, 225–263.

    Google Scholar 

  • Leaitch, W. R., Strapp, J. W., Schemenauer, R. S., and Isaac, G. A., 1984: Observations of Cloud Droplets, Aerosol Particles, and Cloud Condensation Nuclei in Continental Air Masses, Paper presented at the 11th Conference on Atmospheric Aerosols, Condensation, and Ice Nucleii, Hungary.

  • Liebsch, E. J. and de Pena, R. G., 1982: Sulfate aerosol production in coal-fired power plant plumes, Atmos. Environ. 16, 1323–1331.

    Google Scholar 

  • McHenry, J. N. and Dennis, R. L., 1994: The relative importance of oxidation pathways and clouds to atmospheric ambient sulfate production as predicted by the Regional Acid Deposition Model, J. Appl. Meteor. 33, 890–905.

    Google Scholar 

  • Meetham, A. R., 1950: Natural removal of pollution from the atmosphere, Q. J. R. Meteorol. Soc. 76, 359–371.

    Google Scholar 

  • Mészáros, E., Varhelyi, G., and Haszpra, L., 1978: On the atmospheric sulfur budget over Europe, Atmos. Environ. 12, 2273–2277.

    Google Scholar 

  • Middleton, P. and Chang, J. S., 1990: Analysis of RADM gas concentration predictions using OSCAR and NEROS monitoring data, Atmos. Environ. 24A, 2113–2125.

    Google Scholar 

  • Middleton, P., Chang, J. S., del Corral, J. C., Geiss, H., and Rosinski, J. M., 1988: Comparison of RADM and OSCAR chemistry data, Atmos. Environ. 22, 1195–1208.

    Google Scholar 

  • Misra, P. K., Chan, W. H., Chung, D., and Tang, AL. J. S., 1985: Scavenging ratios of acidic pollutants and their use in long-range transport models, Atmos. Environ. 19, 1471–1475.

    Google Scholar 

  • Möller, D., 1984: Estimation of the global man-made sulphur emission, Atmos. Environ. 18, 19–27.

    Google Scholar 

  • Nordlund, G., 1983: Seasonal averages of net decay rate of SO2over northern Europe, Atmos. Environ. 17, 1199–1201.

    Google Scholar 

  • Omstedt, G. and Rodhe, H., 1978: Transformation and removal processes for sulfur compounds in the atmosphere as described by a one-dimensional time-dependent diffusion model, Atmos. Environ. 12, 503–509.

    Google Scholar 

  • Oppenheimer, M., 1983: The relationship of sulfur emissions to sulfate in precipitation, Atmos. Environ. 17, 451–460.

    Google Scholar 

  • Placet, M., Battye, R. E., Fehsenfeld, F. C., and Bassett, G. W., 1990: Emissions involved in acidic deposition processes, NAPAP SOS/T report 1, in: National Acid Precipitation Assessment Program: State of Science and Technology, Vol. 1, National Acid Precipitation Assessment Program, Washington, D.C.

  • Prahm, L. P., Torp, U., and Stern, R.M., 1976: Deposition and transformation rates of sulphur oxides during atmospheric transport over the Atlantic, Tellus 27, 355–372.

    Google Scholar 

  • Research and Monitoring Coordinating Committee (RMCC), 1990: The 1990 Canadian Long-Range Transport of Air Pollutants and Acid Deposition Assessment Report, 3, Atmospheric Sciences, Atmos. Environ. Serv., Environ. Can., Downsview, Ont.

    Google Scholar 

  • Renner, E., Ratzlaff, U., and Rolle, W., 1985: A Lagrangian multi-level model of transport, transformation and deposition of atmospheric sulfur dioxide and sulfate, Atmos. Environ. 19, 1351–1359.

    Google Scholar 

  • Rodhe, H., 1972: A study of the sulfur budget for the atmosphere over Northern Europe, Tellus 24, 128–138.

    Google Scholar 

  • Rodhe, H., 1976: An atmospheric sulfur budget for NW Europe, in: Nitrogen, Phosphorus, and Sulfur-Global Cycles, SCOPE Report 7, Berglingska Boktryckeriet, Sweden.

  • Rodhe, H., 1978: Budgets and turn-over times of atmospheric sulfur compounds, Atmos. Environ. 12, 671–680.

    Google Scholar 

  • Rodhe, H. and Grandell, J., 1972: On the removal time of aerosol particles from the atmosphere by precipitation scavenging, Tellus XXIV, 442–454.

    Google Scholar 

  • Rodhe, H. and Isaksen, I., 1980: Global distribution of sulfur compounds in the troposphere estimated in a height/latitude transport model, J. Geophys. Res. 85, 7401–7409.

    Google Scholar 

  • Schwartz, S. E., 1979: Residence times in reservoirs under non-steady-state conditions: Applications to atmospheric SO2 and aerosol sulfate, Tellus 31, 530–547.

    Google Scholar 

  • Seland, O., van Pul, A., Sorteberg, A., and Tuovinen, J-P., 1995: Implementation of a resistance dry deposition module and a variable local correction factor in the Lagrangian EMEP model, EMEP/MSC-W Report 3/95, The Norwegian Meteorological Institute, Oslo.

    Google Scholar 

  • Shannon, J. D., 1981: A model of regional long-term average sulfur atmospheric pollution, surface removal, and net horizontal flux, Atmos. Environ. 15, 689–701.

    Google Scholar 

  • Sheih, C. M., Wesley, M. L., and Hicks, B. B., 1979: Estimated dry deposition velocities of sulfur over the eastern United States and surrounding regions, Atmos. Environ. 13, 1361–1368.

    Google Scholar 

  • Sisterson, D. L., Bowersox, V. C., Meyers, T. P., Olsen, A. R., and Vong, R. J., 1990: Deposition monitoring: Methods and results, NAPAP SOS/T report 6, in: National Acid Precipitation Assessment Program: State of Science and Technology, Vol. 1, National Acid Precipitation Assessment Program, Washington, D.C.

    Google Scholar 

  • Smith, F. B. and Jeffrey, G. H., 1975: Airborne transport of sulphur dioxide from the U.K., Atmos. Environ. 9, 643–659.

    Google Scholar 

  • Summers, P.W. and Fricke, W., 1989: Atmospheric decay distances and times for sulphur and nitrogen oxides from air and precipitation monitoring in eastern Canada, Tellus 41B, 286–295.

    Google Scholar 

  • Taylor, G. R., 1989: Sulfate production in midlatitude continental cumulus clouds. Part II: Chemistry model formulation and sensitivity analysis, J. Atmos. Sci. 46, 1991–2007.

    Google Scholar 

  • Venkatram, A., Karamchandani, P.K., and Misra, P.K., 1988: Testing a comprehensive acid deposition model, Atmos. Environ. 22, 737–747.

    Google Scholar 

  • Warneck, P., 1988: Chemistry of the Natural Atmosphere, Academic Press, San Diego, pp. 757.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

WOJCIK, G.S., CHANG, J.S. A Re-Evaluation of Sulfur Budgets, Lifetimes, and Scavenging Ratios for Eastern North America. Journal of Atmospheric Chemistry 26, 109–145 (1997). https://doi.org/10.1023/A:1005848828770

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005848828770

Navigation