Journal of Atmospheric Chemistry

, Volume 26, Issue 3, pp 223–274 | Cite as

Tropospheric Ozone in a Global-Scale Three-Dimensional Lagrangian Model and Its Response to NOX Emission Controls

  • W. J. Collins
  • D. S. Stevenson
  • C. E. Johnson
  • R. G. Derwent


A three-dimensional Lagrangian tropospheric chemistry modelis used toinvestigate the impact of human activities on the tropospheric distributionofozone and hydroxyl radicals. The model describes the behaviour of 50 speciesincluding methane, carbon monoxide, oxides of nitrogen, sulphur dioxide andnineorganic compounds emitted from human activities and a range of other sources.Thechemical mechanism involves about 100 chemical reactions of which 16 arephotochemical reactions whose diurnal dependence is treated in full. The modelutilises a five minute chemistry time step and a three hour advection timestepfor the 50,000 air parcels. Meteorological data for the winds, temperatures,clouds and so on are taken from the UK Meteorological Office global model for1994 onwards. The impacts of a 50% reduction in European NOXemissions onglobal ozone concentrations are assessed. Surface ozoneconcentrations decrease in summertime and rise in wintertime, but to differentextents.

global model three-dimensional Lagrangian tropospheric chemistry ozone NOX emission controls 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., and Troe, J., 1992: Evaluated kinetic and photochemical data for atmospheric chemistry, Supplement IV, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data 21, 1125–1568.Google Scholar
  2. Atkinson, R., 1994: Gas phase tropospheric chemistry of organic compounds, J. Phys. Chem. Ref. Data, Monograph 2, 1–216.Google Scholar
  3. Benkovitz, C. M., Dignon, J., Pacyna, J., Scholtz, T., Tarrason, L., Volder, E., and Graedel, T. E., 1996: Global Inventories of Anthropogenic Emissions of SO2and NO x(in preparation).Google Scholar
  4. Blake, D. R. and Rowland, F. S., 1986: World wide increase in tropospheric methane, J. Atmos. Chem. 4, 43–62.Google Scholar
  5. Burkholder, J. B., Talukdar, R. K., Ravishankara, A. R., and Solomon, S., 1993: Temperature dependence of the HNO3 UV absorption spectrum, submitted to J. Geophys. Res. Google Scholar
  6. Carroll, M. A., Ridley, B. A., Montzka, D. D., Hubler, G., Walega, J. G., Norton, R. B., Huebert, B. J., and Grahek, F. E, 1992: Measurements of nitric oxide and nitrogen dioxide during the Mauna Loa Observatory Photochemistry Experiment, J. Geophys. Res. 97, 10361–10374.Google Scholar
  7. Chatfield, R. B. and Delany, A. C., 1990: Convection links biomass burning to increased tropical ozone: However, models will tend to overpredict O3, J. Geophys. Res. 95, 18473–18488.Google Scholar
  8. Chock, D. P. and Winkler, S. L., 1994: A comparison of advection algorithms coupled with chemistry, Atmos. Environ. 28, 2659–2675.Google Scholar
  9. Cicerone, R. J., 1988: How has the atmospheric concentration of CO changed? in: F. S. Rowland and I. S. A. Isaksen (ed), The Changing Atmosphere, Wiley, New York, pp. 44–61.Google Scholar
  10. Combrink, J., Diab, R. D., Sokolic, F., and Brunke, E. G., 1995: Relationship between surface, free tropospheric and total column ozone in two contrasting areas in South Africa, Atmos. Environ. 29, 685–691.Google Scholar
  11. Crutzen, P. J., 1974: Photochemical reactions initiated by and influencing ozone in the unpolluted troposphere, Tellus 26, 47–57.Google Scholar
  12. Crutzen, P. J. and Gidel, L. T., 1983: A two-dimensional photochemical model of the atmosphere, 2: The tropospheric budgets of the anthropogenic chlorocarbons, CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone, J. Geophys. Res. 88, 6641–6661.Google Scholar
  13. Cullen, M. J. P., 1993: The unified forecast/climate model, Meteorological Magazine 122, 81–94.Google Scholar
  14. Dabdub, D. and Seinfeld, J. H., 1994: Numerical advective schemes used in air quality models–sequential and parallel implementation, Atmos. Environ. 28, 3369–3385.Google Scholar
  15. Dentener, F. J. and Crutzen, P. J., 1993: Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3, and OH, J. Geophys. Res. 98, 7149–7163.Google Scholar
  16. Derwent, R. G., Simmonds, P. G., and Collins, W. J., 1994: Ozone and carbon monoxide measurements at a remote maritime location,Mace Head, Ireland, from 1990 to 1992, Atmos. Environ. 28, 2623–2637.Google Scholar
  17. Dignon, J. and Hameed, S., 1989: Global emissions of nitrogen and sulfur oxides from 1860 to 1980, J. Air Pollut. Control Ass. 39, 180–186.Google Scholar
  18. Ehhalt, D. H. and Drummond, J. W., 1988: NOx sources and the tropospheric distribution of NOx during STRATOZ III, in: I. S. A. Isaksen (ed.), Tropospheric Ozone, D. Reidel, Dordrecht, pp. 217–237.Google Scholar
  19. Ehhalt, D. H., Rohrer, F., and Wahner, A., 1992: Sources and distribution of NOχ in the upper troposphere at northern mid-latitudes, J. Geophys. Res. 97, 3725–3738.Google Scholar
  20. Eliassen, A., Hov, O., Isaksen, I. S. A., Saltbones, J., and Stordal, F., 1982: A Lagrangian long range transport model with atmospheric boundary layer chemistry, J. Appl. Meteor. 21, 1645–1661.Google Scholar
  21. Franzblau, E. and Popp, C. J., 1989, Nitrogen oxides produced from lightning, J. Geophys. Res. 94, 11089–11104.Google Scholar
  22. Gregory, G. L., Browell, E. V., and Warren, L. S., 1988: Boundary layer ozone: An airborne survey above the Amazon Basin, J. Geophys. Res. 93, 1452–1468.Google Scholar
  23. Guenter, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, R., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P., 1995: A global model of natural volatile organic compound emissions, J. Geophys. Res. 100, 8873–8892.Google Scholar
  24. Haagen-Smit, A. J., Bradley, C. E., and Fox, M. M., 1953: Ozone formation in photochemical oxidation of organic substances, Ind. Eng. Chem. 45, 2086–2089.Google Scholar
  25. Hjellbrekke, A.-G., Schaug, J., and Skjelmoen, J. E., 1996: EMEP Data Report 1994. Part 1: Annual summaries, EMEP/CCC-Report 4/96, NILU, Norway.Google Scholar
  26. Hough, A. M., 1988: The calculation of photolysis rates for use in global tropospheric modelling studies, AERE Report R-13259, HMSO, London.Google Scholar
  27. Hough, A. M., 1991: Development of a two-dimensional global troposphericmodel: Model chemistry, J. Geophys. Res. 96, 7325–7362.Google Scholar
  28. Hough, A. M. and Derwent, R. G., 1990: Changes in the global concentration of tropospheric ozone due to human activities, Nature 344, 645–660.Google Scholar
  29. Hough, A. M. and Woods, K. J., 1988: Ozone concentrations in the global atmosphere. Analysis of data from the SBUV instrumentation the Nimbus-7 satellite, AERE Report R-13271, HMSO, London.Google Scholar
  30. IPCC, 1995: Climate Change 1994. Radiative Forcing of Climate Change, Intergovernmental Panel on Climate Change, CUP, Cambridge.Google Scholar
  31. Jacob, D. J. and Wofsy, S. C., 1988: Photochemistry of biogenic emissions over the Amazon forest, J. Geophys. Res. 93, 1477–1486.Google Scholar
  32. Jacob, D. J., Logan, J. A., Yevich, R. M., Gardner, G. M., Spivakovsky, C. M., Wofsy, S. C., Munger, J. W., Sillman, S., Prather, M. J., Rodgers, M. O., Westberg, H., and Zimmerman, P. R., 1993: Simulation of summertime ozone over North America, J. Geophys. Res. 98, 14797–14816.Google Scholar
  33. Kanakidou, M. and Crutzen, P. J., 1993: Scale problems in global tropospheric chemistry modeling: Comparison of results obtained with a three-dimensional model, adopting longitudinally uniform and varying emissions of NOx and NHMC, Chemosphere 26, 787–801.Google Scholar
  34. Kasibhatla, P. S., Levy, H., Moxim, W. J., and Chameides, W. L., 1993: The relative impact of stratospheric photochemical production on tropospheric NOY levels: A model study, J. Geophys. Res. 96, 18631–18636.Google Scholar
  35. Komhyr, W. D., Oltmans, S. J., Franchois, P. R., Evans, W. F. J., and Matthews, W. A., 1989: The latitudinal distribution of ozone to 35 km altitude from ECC ozonesonde observations, 1985–1987, in: R. D. Bojkov and P. Fabian (eds), Ozone in the Atmosphere, A. Deepak, Hampton, Va, pp. 147–150.Google Scholar
  36. Leighton, P. A., 1961: Photochemistry of Air Pollution, Academic Press, New York.Google Scholar
  37. Lelieveld, J. and Crutzen, P. J., 1994: Role of deep cloud convection in the ozone budget of the troposphere, Science 264, 1759–1761.Google Scholar
  38. Levy, H., 1971: Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science 173, 141–143.Google Scholar
  39. Lin, X., Trainer, M., and Liu, S. C., 1988: On the nonlinearity of the tropospheric ozone production, J. Geophys. Res. 93, 15879–15888.Google Scholar
  40. Liu, S. C., Trainer, M., Fehensfeld, F. C., Parrish, D. D., Williams, E. J., Fahey, D.W., Hübler, G., and Murphy, P. C., 1987: Ozone production in the rural troposphere and the implications for regional and global ozone distributions, J. Geophys. Res. 92, 4191–4207.Google Scholar
  41. Logan, J. A., 1983: Nitrogen oxides in the troposphere: Global and regional budgets, J. Geophys. Res. 88, 10785–10807.Google Scholar
  42. Logan, J. A., 1985: Tropospheric ozone, seasonal behaviour, trends and anthropogenic influence, J. Geophys. Res. 90, 10463–10482.Google Scholar
  43. Martinez, R. D., Buitrago, A. A., Howell, N. W., Hearn, C. H. G., and Joens, J. A., 1992: The near UV absorption spectra of several aliphatic aldehydes and ketones at 300K, Atmos. Environ. 26A, 185–792.Google Scholar
  44. Maryon, R. H. and Best, M. J., 1992: ‘NAME’, ‘ATMES’ and the boundary layer problem, Met O (APR) Turbulence and Diffusion Note,No. 204.Google Scholar
  45. McKeen, S. A., Hsie, E.-Y., and Liu, S. C., 1991, A study of the dependence of rural ozone on ozone precursors in the eastern United States, J. Geophys. Res. 196, 15377–15394.Google Scholar
  46. Munger, J.W., Wofsy, S. C., Bakwin, P. S., Fan, S.-M., Goulden, M. L., Daube, B. C., and Goldstein, A. H., 1996: Atmospheric deposition of reactive nitrogen oxides and ozone in a temperate deciduous forest and a subarctic woodland. 1. Measurements and mechanisms, J. Geophys. Res. 101, 12639–12657.Google Scholar
  47. Murphy, D.M. and Fahey, D.W., 1994: An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposphere, J. Geophys. Res. 99, 5325–5332.Google Scholar
  48. NASA Panel for Data Evaluation, 1992: Chemical Kinetics Data for Use in Stratospheric Modeling, Evaluation Number 9, JPL Publications 92–20.Google Scholar
  49. Nicovitch, J. M. and Wine, P. H., 1988: Temperature-dependent absorption cross-sections for hydrogen peroxide vapour, J. Geophys. Res. 93, 2417–2421.Google Scholar
  50. Olson, J. and Watts, J., 1982: Map of Major World Ecosystem Complexes, Environmental Sciences Division, Oak Ridge Nat. Lab., Tenn.Google Scholar
  51. Olszyna, K. J., Bailey, E. M., Simoniatis, R., and Meagher, J. F., 1994: O3 and NOY relationships at a rural site, J. Geophys. Res. 99, 14557–14563.Google Scholar
  52. Oltmans, S. J. and Levy, H. II, 1994: Surface ozone measurements from a global network, Atmos. Environ. 28, 9–24.Google Scholar
  53. Penner, J. E., Atherton, C. S., Dignon, J., Ghan, S. J., Walton, J. J., and Hameed, S., 1991: Tropospheric nitrogen: A three-dimensional study of sources, distributions and deposition, J. Geophys. Res. 96, 959–990.Google Scholar
  54. Poulida, O., Dickerson, R. R., Doddridge, B. G., Holland, J. Z., Wardel, R. G., and Watkins, J. G., 1991: Trace gas concentrations and meteorology in rural Virginia 1. Ozone and carbon monoxide, J. Geophys. Res. 96, 22461–22475.Google Scholar
  55. Price, C. and Rind, D., 1992: A simple lighting parameterization for calculating global lightning distributions, J. Geophys. Res. 97, 9919–9933.Google Scholar
  56. Prinn, R. G., Weiss, R. F., Miller, B. R., Huang, J., Alyea, F. N., Cunnold, D.M., Fraser, P. B., Hartley, D. E., and Simmonds, P. G., 1995: Atmospheric trends and lifetime of trichloroethane and global average hydroxyl radical concentrations based on 1978–1994 ALE/GAGEmeasurements, Science 269, 187–192.Google Scholar
  57. Rasmussen, R. A. and Khalil, M. A. K., 1986: 4. Atmospheric methane in the real and ancient atmospheres: concentrations and interhemispheric gradient, J. Geophys. Res. 89, 11599–11605.Google Scholar
  58. Rattigan, O., Lutman, E., Jones, R. L., Cox, R. A., Clemitshaw, K., and Williams, J., 1992: Temperature-dependent absorption cross sections of gaseous nitric acid and methyl nitrate, J. Photochem. Photobiol. A: Chem. 66, 313–326.Google Scholar
  59. Schumann, U., 1995: The impact of NOx emissions from aircraft upon the atmosphere at flight altitudes 8–15 km (AERONOX), CEC Report, Brussels, Belgium.Google Scholar
  60. Sillman, S., Logan, J. A., and Wofsy, S. C., 1990: A regional scale model for ozone in the United States with sub-grid representation of urban power plant plumes, J. Geophys. Res. 95, 5731–5748.Google Scholar
  61. Simpson, D., 1991: Long period modelling of photochemical oxidants in Europe, EMEP MSC-W Note 1/91, The Norwegian Meteorological Institute, Oslo.Google Scholar
  62. Simpson, D., 1992a: Long period modelling of photochemical oxidants in Europe, EMEP MSC-W Note 1/92, The Norwegian Meteorological Institute, Oslo.Google Scholar
  63. Simpson, D., 1992b: Long-period modelling of photochemical oxidants in Europe.Model calculations for July 1985, Atmos. Environ. 26A, 1609–1634.Google Scholar
  64. Simpson, D., 1993: Photochemical model calculations over Europe for two extended summer periods: 1985 and 1989. Model results and comparison with observations, Atmos. Environ. 27A, 921–943.Google Scholar
  65. Spiro, P. A., Jacob, D. J., and Logan, J. A., 1992: Global inventory of sulfur emissions with 1° x 1° resolution, J. Geophys. Res. 97, 6023–6036.Google Scholar
  66. Stevenson, D. S., Johnson, C. E., Collins, W. J., and Derwent, R. G., 1997a: Changes to tropospheric oxidants from aircraft nitrogen oxide emissions studied with a 3-D Lagrangian model, Atmos. Environ.(in press).Google Scholar
  67. Stevenson, D. S., Johnson, C. E., Collins, W. J., and Derwent, R. G., 1997b: Intercomparison and evaluation of atmospheric transport in a Lagrangian model (STOCHEM), and a Eulerian model (UM), using 222Rn as a short-lived tracer, submitted to the Q. J. Royal Meteorol. Soc. Google Scholar
  68. Strand, A. and Hov, O., 1994: A two-dimensional global study of tropospheric ozone production, J. Geophys. Res. 99, 22877–22895.Google Scholar
  69. Thomson, D. J., 1987: Criteria for the selection of stochastic models of particle trajectories in turbulent flows, J. Fluid. Mech. 180, 529–556.Google Scholar
  70. Trainer, M., Parrish, D. D., Buhr, M. P., Norton, R. B., Fehsenfeld, F. C., Anlauf, K. G., Bottenheim, J. W., Tang, Y. Z., Wiebe, H. A., Roberts, J. M., Tanner, R. L., Newman, L., Bowersox, V. C., Meagher, J. F., Olszyna, K. J., Rodgers, M. O., Wang, T., Berresheim, H., Demerjian, K. L., and Roychowdhury, U. K., 1993: Correlation of ozone with NOY in photochemically aged air, J. Geophys. Res. 98, 2917–2925.Google Scholar
  71. US Standard Atmosphere, 1976: US Government Printing Office, Washington DC.Google Scholar
  72. Turman, B. N. and Edgar, B. C., 1982: Global lightning distributions at dawn and dusk, J. Geophys. Res. 87, 1191–1206.Google Scholar
  73. Volz, A. and Kley, D., 1988: Evaluation of the Montsouris series of ozone measurements made in the nineteenth century, Nature 332, 240–242.Google Scholar
  74. Walton, J., MacCracken, M., Ghan, S., 1988: A global-scale Lagrangian trace species model of transport, transformation, and removal processes, J. Geophys. Res. 93, 8339–8354.Google Scholar
  75. Warneck, P., 1988: Chemistry of the Natural Atmosphere, Academic Press, San Diego, California, pp. 158–170.Google Scholar
  76. Winkler, P., 1988: Surface ozone over the Atlantic Ocean, J. Atmos. Chem. 7, 73–91.Google Scholar
  77. WHO, 1987: Air Quality Guidelines for Europe,WHO Regional Publications, European series No. 23, Word Health Organization, Copenhagen, Denmark.Google Scholar
  78. WMO, 1986: Atmospheric Ozone 1985, assessment of our understanding of the processes controlling its present distribution and change, Global Ozone Research and Monitoring Project, Report No. 16, World Meteorological Organisation, Geneva.Google Scholar
  79. WMO, 1995: Scientific assessment of ozone depletion: 1994, World Meteorological Organisation. Global Ozone Research and Monitoring Project, Report No. 37, Geneva.Google Scholar
  80. Yienger, J. J. and Levy, H. III, 1995: An empirical model of global soil-biogenic NOx emission, J. Geophys. Res. 100, 11447–11464.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • W. J. Collins
    • 1
  • D. S. Stevenson
    • 1
  • C. E. Johnson
    • 1
  • R. G. Derwent
    • 1
  1. 1.Meteorological OfficeBracknell, BerkshireUnited Kingdom

Personalised recommendations