Skip to main content

Statistical Analysis of Mixtures and the Empirical Probability Measure

Abstract

We consider the problem of estimating a mixture of probability measures in an abstract setting. Twelve examples are worked out, in order to show the applicability of the theory.

This is a preview of subscription content, access via your institution.

References

  • Abramowitz, M. and Stegun, J. A. (1965), Handbook of Mathematical Functions, Dover, New York.

  • Andrews, D. F. and Mallows, C. L. (1974), Scale mixture of normal distributions, J. Roy. Statist. Soc., Ser. B 36, 99-102.

    Google Scholar 

  • Andrews, D. W. K. and Pollard, D. (1994), An introduction to functional central limit theorems for dependent stochastic processes, Internat. Statist. Rev. 62, 119-132.

    Google Scholar 

  • Bach, A., Plachky, D. and Thomson, W. (1987), A characterization of identifiability of mixtures of distributions, in: M. L. Puri and P. Révész (eds), Mathematical Statistics and Probability Theory, Vol. A, D. Reidel, Dordrecht, pp. 15-21.

    Google Scholar 

  • Bagirov, E. B. (1988), Some remark on mixtures of normal distributions, Theory Probab. Appl. 33, 709-710.

    Google Scholar 

  • Barbe, Ph. and Bertail, P. (1995), The Weighted Bootstrap, Lecture Notes in Statistics, Springer, New York.

    Google Scholar 

  • Barndorff-Nielsen, O. (1965), Identifiability of finite mixtures of exponential families, J. Math. Anal. Appl. 21, 115-121.

    Google Scholar 

  • Barndorff-Nielsen, O., Kent, J. and Sørensen, M. (1982), Normal variance-mean mixture and z-distributions, Internat. Statist. Rev. 50, 145-159.

    Google Scholar 

  • Bercovici, H. and Foias, C. (1984), A real variable restatement of Riemann's hypothesis, Israel J. Math. 48, 57-68.

    Google Scholar 

  • Beurling, A. (1955), A closure problem related to the Riemann Zeta-function, Proc. Acad. Sci. U.S.A. 41, 312-314.

    Google Scholar 

  • Bickel, P. J., Klaassen, C. A., Ritov, Y. and Wellner, J. A. (1993), Efficiency and Adaptative Estimation for Semiparametric Models, Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Birgé, L. (1989), The Grenander estimator: a nonasymptotic approach, Ann. Statist. 17, 1532-1549.

    Google Scholar 

  • Blum, J. R. and Sursala, V. (1977), Estimating the parameters of a mixing disribution function, Ann. Probab. 5, 200-209.

    Google Scholar 

  • Bondesson, L. (1992), Generalized Gamma Convolutions and Related Classes of Distributions, Lecture Notes in Statistics 76, Springer, New York.

    Google Scholar 

  • Borwein, P. and Ederlyi, T. (1995), Polynomials and Polynomial Inequalities, Springer, New York.

    Google Scholar 

  • Bruni, C. and Koch, G. (1985), Identifiability of continuous mixtures of unknown Gaussian distributions, Ann. Probab. 13, 1341-1357.

    Google Scholar 

  • Carroll, R. J. and Hall, P. (1988), Optimal rates for deconvolving a density, J. Amer. Statist. Assoc. 83, 1184-1186.

    Google Scholar 

  • Chandra, S. (1977), On the mixture of probability distributions, Scand. J. Statist. 4, 105-112.

    Google Scholar 

  • Chen, J. (1995), Optimal rate of convergence for finite mixture models, Ann. Statist. 23, 221-223.

    Google Scholar 

  • Choi, K. and Bulgren, W. B. (1968), An estimation procedure for mixture of distributions, J. Roy. Statist. Soc., Ser. B, 444-460.

  • Conway, J. B. (1973), Functions of One Complex Variable, Springer, New York.

    Google Scholar 

  • Davis, Ph. J. (1963), Interpolation and Approximation, Blaisdell, New York.

    Google Scholar 

  • Deely, J. J. and Kuse, R. L. (1968), Construction of sequences estimating the mixture distribution, Ann. Math. Statist. 39, 286-288.

    Google Scholar 

  • Delbaen, F. and Hazendonck, J. (1984), Weighted Markov processes with an application to risk theory, in: F. de Vylder, M. Govaerts and J. Hazendonck (eds), Proc. NATO Advanced Study Institute on Insurance Premium, Louvain, July 18-31, 1983, D. Reidel, Dordrecht, pp. 121-132.

    Google Scholar 

  • Devroye, L. (1990), Consistent deconvolution in density estimation, Canad. J. Statist. 17, 235-239.

    Google Scholar 

  • Dharmadhikari, S. and Joag-Dev, K. (1988), Unimodality, Convexity, and Applications, Academic Press, New York.

    Google Scholar 

  • Dvoretski, A., Kiefer, J. and Wolfowitz, J. (1956), Asymptotic minimax charater of the sample distribution function and of the classical multinomial estimation, Ann. Math. Statist. 27, 642- 669.

    Google Scholar 

  • Dudley, R. M. (1984), A Course on Empirical Processes, in: École d'Été de Probabilité de Saint Flour, XII-1982, Lecture Notes in Math. 1097, Springer, New York, pp. 1-142.

    Google Scholar 

  • Dudley, R. M. (1987), Universal Donsker classes and metric entropy, Ann. Probab. 15, 1306-1326.

    Google Scholar 

  • Eagleson, G. K. (1975), Martingale convergence to mixture of infinitely divisible laws, Ann. Probab. 3, 557-562.

    Google Scholar 

  • Edelman, D. (1988), Estimation of the mixing distribution for a normal mean with applications to the compound decision problem, Ann. Statist. 16, 1602-1622.

    Google Scholar 

  • Efron, B. and Olshen, R. (1978), How broad is the class of normal scale mixtures?, Ann. Statist. 6, 1159-1164.

    Google Scholar 

  • Eggermont, P. and LaRiccia, V. N. (1995), Maximum smoothed likelihood density estimation for inverse problems, Ann. Statist. 23, 199-220.

    Google Scholar 

  • Everitt, B. S. and Hand, D. J. (1981), Finite Mixture Distributions, Chapman and Hall, London.

    Google Scholar 

  • Fan, J. (1988), On the optimal rates of convergence for nonparametric deconvolution problem, Ann. Statist. 19, 1257-1272.

    Google Scholar 

  • Farrell, R. H. (1962), Representation of invariant measures, Illinois J. Math. 6, 447-467.

    Google Scholar 

  • Feller, W. (1971), Theory of Probability and its Applications, Vol. 2, Wiley, New York.

    Google Scholar 

  • Fraser, M. D., Hsu, Y. S. and Walker, J. J. (1981), Identifiability of finite mixture of von Mises distributions, Ann. Statist. 9, 1130-1131.

    Google Scholar 

  • Gallot, S., Hulin, D. and Lafontaine, J. (1993), Riemannian Geometry, 2nd edn, Springer, Berlin.

    Google Scholar 

  • Giné, E. and Zinn, J. (1990), Bootstrapping general empirical functions, Ann. Probab. 18, 851-869.

    Google Scholar 

  • Goldie, C. M. (1967), A class of infinitely divisible random variables, Proc. Camb. Philos. Soc. 63, 1141-1143.

    Google Scholar 

  • Gradshteyn, J. and Ryzhik, J. M. (1980), Table of Integrals, Series and Products, 5th edn, Academic Press, San Diego, Calif.

    Google Scholar 

  • Grenander, U. (1956), On the theory of mortality measurement, part II, Scand. Actuar. J. 39, 125-153.

    Google Scholar 

  • Groeneboom, P. (1985), Estimating a monotone density, in: L. M. LeCam and R. A. Olshen (eds), Proc. Berkeley Conf. in Honor of Jerzy Neyman and Jack Kiefer, 2, Wadsworth, Belmont, Calif., pp. 539-555.

  • Gross, L. (1967), Abstract Wiener spaces, in: L. M. Le Cam and J. Neyman (eds), Proc. Fifth Berkeley Symp. Math. Statist. Probab., Vol II(1), University of California Press, Berkeley, Calif., pp. 31-42.

    Google Scholar 

  • Hartigan, J. A. and Hartigan, P. M. (1985), The dip test of unimodality, Ann. Statist. 13, 70-80.

    Google Scholar 

  • Hengartner, N. (1997), Adaptative demixing in Poisson mixture models, Ann. Statist. 25, 917-928.

    Google Scholar 

  • Hervé, M. (1989), Analycity in Infinite Dimensional Spaces, De Gruyter, Berlin.

    Google Scholar 

  • Ikeda, N. and Watanabe, S. (1989), Stochastic Differential Equations and Diffusions Processes, 2nd edn, North-Holland/Kodansha.

  • Jewel, N. (1982), Mixtures of exponential distributions, Ann. Statist. 10, 479-484.

    Google Scholar 

  • Kamarkar, N. (1984), A new polynomial-time algorithm for linear programming, Combinatorica 4, 373-395.

    Google Scholar 

  • Keilson, J. and Steutel, F. W. (1972), Families of infinite divisible distributions closed under mixing and convolutions, Ann. Math. Statist. 43, 242-250.

    Google Scholar 

  • Kelker, D. (1971), Infinite divisibility and variance mixture of the normal distribution, Ann. Math. Statist. 42, 802-808.

    Google Scholar 

  • Kent, J. T. (1981), Convolution mixture of infinitely divisible distributions, Math. Proc. Camb. Phil. Soc. 90, 141-153.

    Google Scholar 

  • Kent, J. T. (1983), Identifiability of finite mixture for directional data, Ann. Statist. 11, 984-988.

    Google Scholar 

  • Khachiyan, L. G. (1979), A polynomial algorithm in linear progamming, Soviet. Math. Dokl. 20, 191-194.

    Google Scholar 

  • Kiefer, J. and Wolfowitz, J. (1976), Asymptotically minimax estimation of concave and convex distribution functions, Zeit. Wahrsch. Theor. verw. Geb. 34, 73-85.

    Google Scholar 

  • Kim, J. and Pollard, D. (1990), Cube root asymptotics, Ann. Statist. 18, 191-219.

    Google Scholar 

  • Kintchine, A. Y. (1938), On unimodal distributions, Izv. Nauchno-Issled. Inst. Mat. Mech. Tomsk. Gos. Univ. 2, 1-7.

    Google Scholar 

  • Laird, N. (1978), Nonparametric maximum-likelihood estimation of a mixing distribution, J. Amer. Statist. Assoc. 73, 805-811.

    Google Scholar 

  • Lambert, D. and Tierney, L. (1984), Asymptotic properties of maximum likelihood estimates in the mixed Poisson model, Ann. Statist. 12, 1388-1399.

    Google Scholar 

  • Ledoux, M. (1994), Isoperimetry and Gaussian Analysis, École d'Été de Probabilités de St. Flour, Lecture Notes in Math., Springer, New York, to appear.

    Google Scholar 

  • Ledoux, M. (1996), On Talagrand's deviation inequalities for product measures, Preprint.

  • Lehman, E. L. (1959), Testing Statistical Hypotheses, Wiley, New York.

    Google Scholar 

  • Lemdani, M. (1995), Tests dans le cas d'un mélange de Lois dans des modèles paramétriques et non paramétriques, PhD thesis, École Polytechnique.

  • Lindsay, B. G. (1983a), The geometry of mixture likelihood: a general theory, Ann. Statist. 11, 86-94.

    Google Scholar 

  • Lindsay, B. G. (1983b), Efficiency of the conditional score in a mixture setting, Ann. Statist. 11, 486-497.

    Google Scholar 

  • Lindsay, B. G. (1995), Mixture Models: Theory, Geometry and Applications, NSF-CBMS Regional Conference Series in Probability and Statistics, Vol. 5, IMS, Hayward, CA.

    Google Scholar 

  • Lo, A. (1991), Bayesian bootstrap clones and a biometry function, Sankhya Ser. A 53, 320-333.

    Google Scholar 

  • Lüxmann-Ellingaus, U. (1987), On the identifiability of mixtures of infinitely divisible power series distributions, Statist. Probab. Lett. 5, 375-378.

    Google Scholar 

  • MacDonald, P. D. M. (1971), Comment on 'An estimation procedure for mixture of distributions' by Choi and Bulgren, J. Roy. Statist. Soc. Ser. B 33, 326-329.

    Google Scholar 

  • McLachlan, G. J. and Basford, K. E. (1988), Mixture Models: Inference and Applications to Clustering, Marcel Dekker, New York.

    Google Scholar 

  • Maitra, A. (1977), Integral representations of invariant measures, Trans. Amer. Math. Soc. 229, 209-225.

    Google Scholar 

  • Mammen, E., Maron, S. and Fisher, N. I. (1992), Some asymptotic for multimodality tests based on kernel density estimator, Probab. Theory Related Fields 91, 115-132.

    Google Scholar 

  • Martin, R. D. and Schwartz, S. C. (1972), On mixture, quasi-mixture and nearly normal random processes, Ann. Math. Statist. 40, 948-967.

    Google Scholar 

  • Mason, D. M. and Newton, M. A. (1992), A rank statistic approach to the consistency of a general weighted bootstrap, Ann. Statist. 20, 1611-1624.

    Google Scholar 

  • Massart, P. (1986), Rates of convergence in the central limit theorem for empirical process, Ann. Inst. Henri Poincaré, Probab. Statist. 22, 381-424.

    Google Scholar 

  • Massé, J. C. (1993), Nonparametric maximum likelihood estimation in a nonlocally compact parameter setting, Technical report 93-24, Département de Mathématique et de Statistique, Université Laval, Québec.

  • Milhaud, X. and Mounime, S. (1993), A modified maximum likelihood estimator for finite mixture, preprint.

  • Miller, K. S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equation, Wiley, New York.

    Google Scholar 

  • Noack, A. (1950), A class of random variables with discrete distribution, Ann. Math. Statist. 21, 127-132.

    Google Scholar 

  • Olshen, R. A. and Savage, L. J. (1970), Generalized unimodality, J. Appl. Probab. 7, 21-34.

    Google Scholar 

  • Patil, G. P. and Bildikar, S. (1966), Identifiability of countable mixtures of discrete probability distributions using methods of infinite matrices, Proc. Camb. Philos. Soc. 62, 485-494.

    Google Scholar 

  • Pearson, K. (1894), Contribution to the mathematical theory of evolution, Philos. Trans. Roy. Soc. London Ser. A 185, 71-110.

    Google Scholar 

  • Pfanzagl, J. (1988), Consistency of maximum likelihood estimators for certain nonparametric families, in particular mixtures, J. Statist. Plann. Inf. 19, 137-158.

    Google Scholar 

  • Pollard, D. (1984), Convergence of Stochastic Processes, Springer, New York.

    Google Scholar 

  • Praestgaard, J. and Wellner, J. A. (1984), Exchangeably weighted bootstraps of the general empirical process, Ann. Probab. 21, 2053-2086.

    Google Scholar 

  • Prakasa Rao, B. L. S. (1969), Estimating a unimodal density, SankhyáSer. A 31, 23-36.

    Google Scholar 

  • Prakasa Rao, B. L. (1992), Identifiability in Stochastic Models: Characterization of Probability Distributions, Academic Press, New York.

    Google Scholar 

  • Redner, R. and Walker, H. F. (1984), Mixture densities, maximum likelihood and the E.M. algorithm, SIAM Rev. 26, 195-239.

    Google Scholar 

  • Rennie, R. R. (1972), On the independence of the identifiability of finite multivariate mixture and the identifiability of the marginal mixtures, SankhyáSer. A 34, 449-452.

    Google Scholar 

  • Robbins, H. (1948), Mixture of distributions, Ann. Math. Statist. 19, 360-369.

    Google Scholar 

  • Rootzén, H. (1977), A note on convergence to mixture of normal distribution, Zeit. Wahrsch. Theor. verw. Geb. 38, 211-216.

    Google Scholar 

  • Santalò, L. (1984), Integral Geometry and Geometric Probability, Cambridge University Press.

  • Schwartz, L. (1943), Étude des sommes d'exponentielles réelles, Act. Sci. Ind. 959, Hermann, Paris.

  • Shanbhag, D. N. and Sreehari, M. (1977), On certain self-decomposable distributions, Zeit. Wahrsch. Theor. verw. Geb. 38, 217-222.

    Google Scholar 

  • Shorack, G. R. and Wellner, J. A. (1986), Empirical Processes with Applications to Statistics, Wiley, New York.

    Google Scholar 

  • Sheehy, A. and Wellner, J. A. (1992), Uniform Donsker classes of functions, Ann. Probab. 20, 1983-2030.

    Google Scholar 

  • Silverman, B. W. (1981), Using kernel density estimates to investigate multimodality, J. Roy. Statist. Soc. Ser. B 43, 97-99.

    Google Scholar 

  • Simar, L. (1976), Maximum likelihood estimation of a compound Poisson process, Ann. Statist. 4, 1200-1209.

    Google Scholar 

  • Stefanski, L. A. (1990), Rates of convergence of some estimators in a class of deconvolution problems, Statist. Probab. Lett. 9, 229-235.

    Google Scholar 

  • Steutel, F. W. (1967), Note on the infinite divisibility of exponential mixtures, Ann. Math. Statist. 38, 1303-1305.

    Google Scholar 

  • Steutel, F. W. (1968), A class of infinitely divisible mixtures, Ann. Math. Statist. 39, 1153-1157.

    Google Scholar 

  • Steutel, F. W. (1970), Preservation of infinite divisibility under mixing and related topics, Math. Center Tracts 33, Amsterdam.

  • Stroock, D. and Varadhan, S. R. S. (1972), On the support of diffusion processes with applications to the strong maximum principle, in: L. M. Le Cam, J. Neyman and E. L. Scott (eds), Proc. Sixth Berkeley Symp. Math. Statist. Probab., University of California Press, Berkeley, CA., pp. 333-359.

    Google Scholar 

  • Szegö, G. (1939), Orthogonal Polynomials, AMS Coll. Publ., Amer. Math. Ser., Providence, R.I.

    Google Scholar 

  • Talagrand, M. (1987), Donsker classes and geometry, Ann. Probab. 15, 1327-1338.

    Google Scholar 

  • Talagrand, M. (1994), Sharper bounds for Gaussian and empirical processes, Ann. Probab. 22, 28-76.

    Google Scholar 

  • Talagrand, M. (1995), The Glivenko-Cantelli problem, ten years later, Preprint.

  • Talagrand, M. (1995), Concentration of measure and isoperimetric inequalities in product spaces, Publ. Math. IHES 81, 73-205.

    Google Scholar 

  • Tallis, G. M. (1969), The identifiability of mixtures of distributions, J. Appl. Probab. 6, 389-398.

    Google Scholar 

  • Tallis, G. M. and Chesson, P. (1982), Identifiability of mixtures, J. Austral. Math. Soc. 32, 339-348.

    Google Scholar 

  • Teicher, H. (1960), On the mixture of distributions, Ann. Math. Statist. 31, 55-77.

    Google Scholar 

  • Teicher, H. (1961), Identifiability of mixtures, Ann. Math. Statist. 32, 244-248.

    Google Scholar 

  • Teicher, H. (1963), Identifiability of finite mixtures, Ann. Math. Statist. 34, 1265-1269.

    Google Scholar 

  • Teicher, H. (1967), Identifiability of mixtures of product measures, Ann. Math. Statist. 38, 1300- 1302.

    Google Scholar 

  • Thierney, L. and Lambert, D. (1984), Asymptotic efficiency of estimators of functional of mixed distributions, Ann. Statist. 12, 1380-1387.

    Google Scholar 

  • Thorin, O. (1977), On the infinite divisibility of the lognormal distribution, Scand. Actuar. J., 121-148.

  • Titterington, D. M., Smith, A. F. M. and Makov, U. E. (1985), Statistical Analysis of Finite Mixture Distributions, Wiley, New York.

    Google Scholar 

  • Van de Geer, S. (1993), Rates of convergence for the maximum likelihood estimator in mixture models, Technical Report, TW 93-09, University of Leiden.

  • Van de Geer, S. (1994), Asymptotic normality in mixture models, Technical report, TW 94-03, University of Leiden.

  • Van der Vaart, A. (1991), On differentiable functionals, Ann. Statist. 19, 178-204.

    Google Scholar 

  • Varadarajan, V. S. (1963), Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109, 191-220.

    Google Scholar 

  • Yakowitz, S. I. and Spragins, J. D. (1968), On the identifiability of finite mixture, Ann. Math. Statist. 40, 1728-1735.

    Google Scholar 

  • Zhang, C.-H. (1990), Fourier methods for estimating mixing densities and distributions, Ann. Statist. 18, 806-831.

    Google Scholar 

  • Zhang, C.-H. (1995), On estimating mixing densities in discrete exponential family models, Ann. Statist. 23, 929-945.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barbe, P. Statistical Analysis of Mixtures and the Empirical Probability Measure. Acta Applicandae Mathematicae 50, 253–340 (1998). https://doi.org/10.1023/A:1005824513112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005824513112