Skip to main content
Log in

Transposon insertion in genes coding for the biosynthesis of structural components of the Anabaena sp. phycobilisome

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Anabaena sp. PCC 7120 mutants defective in phycobiliprotein biosynthesis or phycobilisome assembly were generated by transposon mutagenesis. Four mutants with grossly reduced content of the major phycobiliprotein, phycocyanin, were found to have insertions within the cpcBACDEFG1G2G3G4 operon coding for phycocyanin biosynthesis and assembly. The insertion in mutant B646 separated the promoter from the open reading frames and eliminated production of the phycocyanin α (CpcA) and β (CpcB) subunits. Insertion in cpcC in mutant B642 eliminated production of the L36 Rlinker polypeptide required for assembly of phycocyanin into the distal discs of the phycobilisome rod substructures. Mutants B64328 and B64407 had insertions, respectively, in cpcE and cpcF, genes coding for the subunits of the heterodimeric lyase which catalyzes the attachment of phycocyanobilin to the phycocyanin apo-α subunit. Mutant SB12, often unable to survive under low light, was found to have an insertion in the apcE gene coding for the large core-membrane linker (L128 CM) that provides the scaffold for assembly of the phycobilisome core. DNA sequencing 3′ of apcE revealed genes apcABC, coding for the α and β subunits of allophycocyanin and for the small core linker L7.8 C. Amino acid sequence comparisons showed that the ApcA and ApcB proteins are 37% identical and that each of these polypeptides is highly similar to corresponding polypeptides from the distantly related filamentous strains Calothrix sp. PCC7601 and Mastigocladus laminosus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Giah W, Miller W, Myers EW and Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410

    Article  PubMed  Google Scholar 

  • Apt KE, Collier JL and Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248: 79-96

    Article  PubMed  Google Scholar 

  • Beale S (1993) Biosynthesis of phycobilins. Chem Rev 93: 139-216

    Google Scholar 

  • Belknap W and Haselkorn R (1987) Cloning and light regulation of expression of the phycocyanin operon of the cyanobacterium Anabaena. EMBO J 6: 871-884

    PubMed  Google Scholar 

  • Berkelman TR and Lagarias JC (1986) Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Anal Biochem 156: 194-201

    PubMed  Google Scholar 

  • Bhalerao RP and Gustafsson P (1994) Factors influencing the phycobilisome rod composition of the cyanobacterium Synechococcussp. PCC 7942: Effects of reduced phycocyanin content, lack of rod-linkers and over-expression of the rod-terminating linker. Physiol Plantarum 90: 187-197

    Google Scholar 

  • Bhalerao RP, Collier JL, Gustafsson P and Grossman AR (1995) The structure of phycobilisomes in mutants of Synechococcussp. strain PCC 7942 devoid of specific linker polypeptides. Photochem Photobiol 61: 298-302

    Google Scholar 

  • Brejc K, Ficner R Huber R, and Steinbacher S (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensisat 2.3 α resolution. J. Mol Biol 249: 424-440

    PubMed  Google Scholar 

  • Bryant DA (1988) Genetic analysis of phycobilisome biosynthesis, assembly, structure, and function in the cyanobacterium Synechococcussp. PCC 7002. In: Stevens SE Jr and Bryant DA (eds) Light-Energy Transduction in Photosynthesis: Higher Plant and Bacterial Models, pp 62-90. The American Society of Plant Physiologists

  • Bryant DA (ed) (1994) The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, the Netherlands

    Google Scholar 

  • Bryant DA, Glazer AN and Eiserling FA (1976) Characterization and structural properties of the major biliproteins of Anabaenasp. Arch Microbiol 110: 61-75

    PubMed  Google Scholar 

  • Bryant DA, Stirewalt VL, Glauser M, Frank G, Sidler W and Zuber H (1991) A small multigene family encodes the rod-core linker polypeptides of Anabaenasp. PCC7120 phycobilisomes. Gene 107: 91-99

    PubMed  Google Scholar 

  • Cai Y and Wolk CP (1990) Use of a conditionally lethal gene in Anabaenasp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol 172: 3138-3145

    PubMed  Google Scholar 

  • Curtis SE (1995) Unpublished data. GenBank accession number U21853.

  • DeLange RJ, Williams LC and Glazer AN (1981) The amino acid sequence of the β subunit of allophycocyanin. J Biol Chem 256: 9558-9566

    PubMed  Google Scholar 

  • de Lorimier R, Bryant DA, Porter RD, Liu W-Y, Jay E and Stevens SE Jr. (1984) Genes for the α and β subunits of phycocyanin. Proc Natl Acad Sci USA 81: 7946-7950

    PubMed  Google Scholar 

  • Ducret A, Sidler W, Wehrli E, Frank G and Zuber H (1996) Isolation, characterization and electron microscopy analysis of a hemidiscoidal phycobilisome type from the cyanobacterium Anabaenasp. PCC7120. Eur J Biochem 236: 1010-1024

    PubMed  Google Scholar 

  • Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA and Glazer AN (1992) Phycocyanin α-subunit phycocyanobilin lyase. Proc Natl Acad Sci USA 89: 7017-7021

    PubMed  Google Scholar 

  • Glauser M, Bryant DA, Frank G, Wehrli E, Sidler W and Zuber H (1992) Phycobilisome structure in the cyanobacteria Mastigocladus laminosusand Anabaenasp. PCC7120: a new model. Eur J Biochem 205: 907-915

    PubMed  Google Scholar 

  • Glazer AN (1994) Adaptive variations in phycobilisome structure. In: Bittar EE and Barber J (eds) Advances in Molecular and Cell Biology, Vol 10, pp 119-149. JAI Press Inc., Greenwich, Connecticut

    Google Scholar 

  • Glazer AN, Lundell DJ, Yamanaka G and Williams RC (1983) The structure of a ‘simple’ phycobilisome. Ann Microbiol (Inst. Pasteur) 134B: 159-180

    Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG and Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57: 725-749

    PubMed  Google Scholar 

  • Hu NT, Thiel T, Giddings TH and Wolk CP (1981) New Anabaenaand Nostoccyanophages from sewage settling ponds. Virology 114: 236-246

    PubMed  Google Scholar 

  • Jung LJ, Chan CF and Glazer AN (1995) Candidate genes for the phycoerythrocyanin α subunit lyase. J Biol Chem 270: 12877-12884

    PubMed  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Odumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystissp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109-136

    PubMed  Google Scholar 

  • Klotz AV and Glazer AN (1987) γ-N-methylasparagine in phycobiliproteins. J Biol Chem 262: 17350-17355

    PubMed  Google Scholar 

  • Klotz AV, Thomas BA, Glazer AN and Blacher RW (1990) Detection of methylated asparagine and glutamine residues in polypeptides. Anal Biochem 186: 95-100

    PubMed  Google Scholar 

  • Kuritz T, Ernst A, Black TA and Wolk CP (1993) High resolution mapping of genetic loci of AnabaenaPCC7120 required for photosynthesis and nitrogen fixation. Mol Microbiol 8: 101-110

    PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685

    PubMed  Google Scholar 

  • Lundell DJ and Glazer AN (1983) Molecular architecture of a light-harvesting antenna. Structure of the 18S core-rod subassembly of the Synechococcus6301 phycobilisome. J Biol Chem 258: 894-901

    PubMed  Google Scholar 

  • Shestakov SV and Khuyen NT (1970) Evidence for genetic transformation in blue-green alga Anacystis nidulans. Mol Gen Genet 107: 372-375

    PubMed  Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 139-216, Kluwer Academic Publishers, Dordrecht, the Netherlands

    Google Scholar 

  • Swanson RV, de Lorimier R and Glazer AN (1992a) Genes encoding the phycobilisome rod substructure are clustered on the Anabaenachromosome: Characterization of the phycoerythrocyanin operon. J Bacteriol 174: 2640-2647

    PubMed  Google Scholar 

  • Swanson RV, Zhou J, Leary JA, Williams T, de Lorimier R, Bryant DA and Glazer AN (1992b) Characterization of phycocyanin produced by cpcEand cpcFmutants and identification of an intergenic suppressor of the defect in bilin attachment. J Biol Chem 267: 16146-16154

    PubMed  Google Scholar 

  • Wolk CP, Cai Y, Cardemil L, Flores E, Hohn B, Murry M, Schmetterer G, Schrautemeier B and Wilson R (1988) Isolation and complementation of mutants of Anabaenasp. strain PCC7120 unable to grow aerobically on dinitrogen. J Bacteriol 170: 1239-1244

    PubMed  Google Scholar 

  • Wolk CP, Cai Y and Panoff J-M (1991) Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc Natl Acad Sci USA 88: 5355-5359

    PubMed  Google Scholar 

  • Wolk CP, Vonshak A, Kehoe P and Elhai J (1984) Construction of shuttle vectors capable of conjugative transfer from Escherichia colito nitrogen-fixing filamentous cyanobacteria. Proc Natl Acad Sci USA 81: 1561-1565

    Google Scholar 

  • Yanisch-Perron C, Vieira J and Messing J (1985) Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103-119

    Article  PubMed  Google Scholar 

  • Yu M-H, Glazer AN and Williams RC (1981) Cyanobacterial phycobilisomes. Phycocyanin assembly in the rod substructures of Anabaena variabilisphycobilisomes. J Biol Chem 256: 13130-13136

    PubMed  Google Scholar 

  • Yu M-H and Glazer AN (1982) Cyanobacterial phycobilisomes. Role of the linker polypeptides in the assembly of phycocyanin. J Biol Chem 257: 3429-3433

    PubMed  Google Scholar 

  • Zhou J, Gasparich GE, Stirewalt VL, de Lorimier R and Bryant DA (1992) The cpcEand cpcFgenes of Synechococcussp. PCC7002: construction and phenotypic characterization of interposon mutants. J Biol Chem 267: 16138-16145

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Y.A., Schwartz, S.H. & Glazer, A.N. Transposon insertion in genes coding for the biosynthesis of structural components of the Anabaena sp. phycobilisome. Photosynthesis Research 53, 109–120 (1997). https://doi.org/10.1023/A:1005816906539

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005816906539

Navigation