Skip to main content
Log in

Phosphorelay control of phycobilisome biogenesis during complementary chromatic adaptation

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

For some cyanobacteria, the spectral distribution of light in the environment regulates the synthesis of specific polypeptides of the phycobilisome or light harvesting antenna complex. This process, called complementary chromatic adaptation, is controlled by a complex type of two component regulatory system. In such pathways, phosphorelay typically occurs through two histidine and two aspartate residues. Generation and complementation of mutants in CCA have uncovered three elements of this pathway, a putative sensor, RcaE, and two response regulators, RcaC and RcaF. RcaC, a large response regulator, contains two input domains, a DNA binding motif and a putative histidine phosphoacceptor domain. RcaF is a small response regulator and apparently lacks an output domain. Ordering of the pathway components has placed RcaE before RcaF, and RcaF before RcaC. This phosphorelay circuitry is novel because it has, instead of four, at least five potential phosphoacceptor domains for signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleby JL, Parkinson JS and Bourret RB (1996) The multi-step phosphorelay: Not necessarily a road less traveled. Cell 86: 845-848

    Article  PubMed  Google Scholar 

  • Bennett A and Bogorad L (1971) Properties of subunits and aggregates of blue-green algal biliproteins. Biochem 10: 3625-3634

    Google Scholar 

  • Bennett A and Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58: 419-435

    Article  PubMed  Google Scholar 

  • Bogorad L (1975) Phycobiliproteins and complementary chromatic adaptation. Annu Rev Plant Physiol 26: 369-401

    Google Scholar 

  • Boyd JM and Lory S (1996) Dual function of PilS during transcriptional activation of the Pseudomonas aeruginosapilin subunit gene. J Bacteriol 178: 831-839

    PubMed  Google Scholar 

  • Bruns B, Briggs WR and Grossman AR (1989) Molecular characterization of phycobilisome regulatory mutants in Fremyella diplosiphon. J Bacteriol 171: 901-908

    PubMed  Google Scholar 

  • Bryant DA (1981) The photoregulated expression of multiple phycocyanin species: General mechanism for control of phycocyanin synthesis in chromatically adapting cyanobacteria. Eur J Biochem 119: 425-429

    PubMed  Google Scholar 

  • Bryant DA and Cohen-Bazire G (1981) Effects of chromatic illumination on cyanobacterial phycobilisomes: Evidence for the specific induction of a second pair of phycocyanin subunits in Pseudanabaena7409 grown in red light. Eur J Biochem 119: 415-424

    PubMed  Google Scholar 

  • Burbulys D, Trach K and Hoch JA (1991) Initiation of sporulation in B. subtilisis controlled by a multicomponent phosphorelay. Cell 64: 545-552

    PubMed  Google Scholar 

  • Capuano V, Braux A-S, Tandeau de Marsac N and Houmard J (1991) The ‘anchor polypeptide’ of cyanobacterial phycobilisomes. Molecular characterization of the Synechococcussp. PCC 6301 apcEgene. J Biol Chem 266: 7239-7247

    PubMed  Google Scholar 

  • Casey ES and Grossman AR (1994) In vivo and in vitro characterization of the light-regulated cpcB2A2promoter of Fremyella diplosiphon. J Bacteriol 176: 6362-6374

    PubMed  Google Scholar 

  • Casey ES, Kehoe DM and Grossman AR (1997) Suppression of mutants aberrant in light intensity responses of complementary chromatic adaptation. J Bacteriol 179: 4599-4606

    PubMed  Google Scholar 

  • Cavicchioli R, Schroder I, Constanti M and Gunsalus RP (1995) The NarX and NarQ sensor-transmitter proteins of Escherichia colieach require two conserved histidines for nitrate-dependent signal transduction to NarL. J Bacteriol 177: 2416-2424

    PubMed  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB and Meyerowitz EM (1993) Arabidopsisethylene-response gene ETR1: Similarity of product to two-component regulators. Science 262: 539-544

    PubMed  Google Scholar 

  • Chiang GG, Schaefer MR and Grossman AR (1992) Complementation of a red-light indifferent cyanobacterial mutant. Proc Natl Acad Sci USA 89: 9415-9419

    PubMed  Google Scholar 

  • Clack T, Mathews S and Sharrock RA (1994) The phytochrome apoprotein family in Arabidopsisis encoded by five genes: The sequences and expression of PHYD and PHYE. Plant Mol Biol 25: 413-427

    PubMed  Google Scholar 

  • Clegg D and Koshland D (1984) The role of a signaling protein in bacterial sensing: Behavioral effects of increased gene expression. Proc Natl Acad Sci USA 81: 5056-5060

    PubMed  Google Scholar 

  • Cobley JG and Miranda RD (1983) Mutations affecting chromatic adaptation in the cyanobacterium Fremyella diplosiphon. J Bacteriol 153: 1486-1492

    PubMed  Google Scholar 

  • Cobley JG, Zerweck E, Reyes R, Mody A, Seludo-Unson JR, Jaeger H, Weerasuriya S and Navankasattusas S (1993) Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coliinto the chromatically adapting cyanobacterium Fremyella diplosiphon. Plasmid 30: 90-105

    PubMed  Google Scholar 

  • Collier JL and Grossman AR (1992) Chlorosis induced by nutrient deprivation in Synechococcussp. Strain PCC 7942: not all bleaching is the same. J Bacteriol 174: 4718-4726

    PubMed  Google Scholar 

  • Collier JL and Grossman AR (1994) A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J 13: 1039-1047

    PubMed  Google Scholar 

  • Conley PB, Lemaux PG and Grossman AR (1985) Cyanobacterial light-harvesting complex subunits encoded in two red light-induced transcripts. Science 230: 550-553

    PubMed  Google Scholar 

  • Conley PB, Lemaux PG and Grossman AR (1988) Molecular characterization and evolution of sequences encoding light harvesting components in the chromatically adapting cyanobacterium Fremyella diplosiphon. J Mol Biol 199: 447-465

    PubMed  Google Scholar 

  • Conley PB, Lemaux PG, Lomax TL and Grossman AR (1986) Genes encoding major light-harvesting polypeptides are clustered on the genome of the cyanobacterium Fremyella diplosiphon. Proc Natl Acad Sci USA 83: 3924-3928

    Google Scholar 

  • Diakoff S and Scheibe S (1973) Action spectra for chromatic adaptation in Tolypothrix tenuis. Plant Physiol 51: 382-385

    Google Scholar 

  • Engelmann TW (1883a) Farbe und Assimilation. Assimilation findet nur in den farbstoffhaltigen Plasmathielchen statt. II. Näherer Zusammenhang zwischen Lichtabsorption und Assimilation. Bot Z 41: 1-13

    Google Scholar 

  • Engelmann TW (1883b) Farbe und Assimilation. III. Weitere Folgerungen. Bot Z 41: 17-29

    Google Scholar 

  • Engelmann TW (1884) Untersuchungen über die qualitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Planzenzellen. I. Das Mikrospectrophotometer ein Apparat zur quantitativen Mikrospectralanalyse. II. Experimentelle Grundlagen zur Ermittelung der quantitativen Beziehungen zwischen Assimilationsenergie und Absorptionsgrösse. Bot Z 42: 97-105

    Google Scholar 

  • Eraso JM and Kaplan S (1994) prrA, a putative response regulator involved in oxygen regulation of photosynthesis gene expression in Rhodobacter sphaeroides. J Bacteriol 176: 32-43

    PubMed  Google Scholar 

  • Fairchild CD and Glazer AN (1994) Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin α subunit phycocyanobilin lyase. J Biol Chem 269: 8686-8694

    PubMed  Google Scholar 

  • Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA and Glazer AN (1992) Phycocyanin α-subunit phycocyanobilin lyase. Proc Natl Acad Sci USA 89: 7017-7021

    PubMed  Google Scholar 

  • Federspiel NA and Grossman AR (1990) Characterization of the light-regulated operon encoding the phycoerythrin-associated linker proteins from the cyanobacterium Fremyella diplosiphon. J Bacteriol 172: 4072-4081

    PubMed  Google Scholar 

  • Federspiel NA and Scott L (1992) Characterization of a light-regulated gene encoding a new phycoerythrin-associated linker protein from the cyanobacterium Fremyella diplosiphon. J Bacteriol 179: 5994-5998

    Google Scholar 

  • Fiedler U and Weiss V (1995) A common switch in activation of the response regulators NtrC and PhoB: Phosphorylation induces dimerization of the receiver modules. EMBO J 14: 3696-3705

    PubMed  Google Scholar 

  • Fujita Y and Hattori A (1960a) Effect of chromatic lights on phycobilin formation in a blue-green alga. Tolypothrix tenuis. Plant Cell Physiol 1: 293-303

    Google Scholar 

  • Fujita Y and Hattori A (1960b) Formation of phycoerythrin in preilluminated cells of Tolypothrix tenuiswith special reference to nitrogen metabolism. Plant Cell Physiol 1: 281-292

    Google Scholar 

  • Fujita Y and Hattori A (1962) Photochemical interconversion between precursors of phycobilin chromoproteids in Tolypothrix tenuis. Plant Cell Physiol 3: 209-220

    Google Scholar 

  • Gaidukov N (1903) Die Farbervänderung bei den Prozessen der Komplementären chromatischen Adaptation. Berichte der Deutschen Botanischen Gesellschaft 21: 517-522

    Google Scholar 

  • Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32: 327-347

    Article  Google Scholar 

  • Glazer AN (1982) Phycobilisomes: structure and dynamics. Ann Rev of Microbiol 36: 173-198

    Google Scholar 

  • Glazer AN (1985) Light harvesting by phycobilisomes. Ann Rev of Biophys and Biophys Chem 14: 47-77

    Google Scholar 

  • Glazer AN, Lundell DJ, Yamanaka G and Williams RC (1983) The structure of a ‘simple’ phycobilisome. Annals Institut Pasteur/Microbiology 134B: 159-180

    Google Scholar 

  • Groisman EA, Chiao E, Lipps CJ and Heffron F (1989) Salmonella typhimurium phoPvirulence gene is a transcriptional regulator. Proc Natl Acad Sci USA 86: 7077-7081

    PubMed  Google Scholar 

  • Grossman AR (1990) Chromatic adaptation and the events involved in phycobilisome biosynthesis. Plant Cell Environ 13: 651-666

    Google Scholar 

  • Grossman AR, Bhaya D, Apt KE and Kehoe DM (1995) Light-harvesting complexes in oxygenic photosynthesis: Diversity, control and evolution. Annu Rev Genet 29: 231-287

    PubMed  Google Scholar 

  • Grossman AR, Schaefer M, Chiang G and Collier J (1994) The responses of cyanobacteria to environmental conditions: Light and nutrients. In Bryant D (ed) The Molecular Biology of Cyanobacteria, pp 641-675. Kluwer Academic Publishers, Dordrecht, the Netherlands

    Google Scholar 

  • Grossman AR, Schaefer MR, Chiang GG and Collier JL (1993) The phycobilisome: A light harvesting complex responsive to environmental conditions. Microbiol Rev 57: 725-749

    PubMed  Google Scholar 

  • Hattori A and Fujita Y (1959a) Formation of phycobilin pigments in a blue-green alga, Tolypothrix tenuis, as induced by illumination with colored lights. J Biochem 46: 521-524

    Google Scholar 

  • Hattori A and Fujita Y (1959b) Effect of pre-illumination on the formation of phycobilin pigments in a blue-green alga, Tolypothrix tenuis. J Biochem 46: 159-1261

    Google Scholar 

  • Haury JF and Bogorad L (1977) Action spectra for phycobiliprotein synthesis in a chromatically adapting cyanophyte, Fremyella diplosiphon. Plant Physiol 60: 835-839

    Google Scholar 

  • Hertig C, Li RY, Louarn A-M, Garnerone A-M, David M, Batut J, Kahn D and Boistard P (1989) Rhizobium melilotiregulatory gene fixJactivates transcription of R. meliloti nifAand fixKGenes in Escherichia coli. J Bacteriol 171: 1736-1738

    PubMed  Google Scholar 

  • Hiller RG, Anderson JM and Larkum AWD (1991) The chlorophyll-protein complexes of algae. In: Scheer H (ed) Chlorophylls, pp 529-547. CRC Press, Boca Raton, FL

    Google Scholar 

  • Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W and Diederichs K (1996) Structural basis of light harvesting by carotenoids: Peridinin-chlorophyll-protein from Amphidinium carterae. Science 272: 1788-1791

    PubMed  Google Scholar 

  • Houmard J, Capuano V, Cousin T and Tandeau de Marsac N (1988) Genes encoding core components of the phycobilisome in the cyanobacterium Calothrixsp. strain 7601. Occurrence of a multigene family. J Bacteriol 170: 5512-5521

    PubMed  Google Scholar 

  • Hua J, Chang C, Sun Q and Meyerowitz EM (1995) Ethylene insensitivity conferred by Arabidopsis ERSgene. Science 269: 1712-1714

    PubMed  Google Scholar 

  • Ishige K, Nagasawa S, Tokishita S-I and Mizuno T (1994) A novel device of bacterial signal transducers. EMBO J 13: 5195-5202

    PubMed  Google Scholar 

  • Jacobs JD, Ludwig JR, Hildebrand M, Kukel A, Feng T-Y, Ord RW and Volcani BE (1992) Characterization of two circular plasmids from the marine diatom Cylindrothece fusiformis: Plasmids hybridize to chloroplast and nuclear DNA. Mol Gen Genet 233: 302-310

    PubMed  Google Scholar 

  • Jansson S (1994) The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta 1184: 1-19

    PubMed  Google Scholar 

  • Kahn K and Schaefer MR (1995) Characterization of transposon Tn5469 from the cyanobacterium Fremyella diplosiphon. J Bacteriol 177: 7026-7032

    PubMed  Google Scholar 

  • Kehoe DM and Grossman AR (1994) Complementary chromatic adaptation: Photoperception to gene regulation. Sem in Cell Biol 5: 303-313

    Google Scholar 

  • Kehoe DM and Grossman AR (1995) The use of site directed mutagenesis in the analysis of complementary chromatic adaptation. In: Proceedings from the Xth International Photosynthesis Congress: Photosynthesis: From Light to Biosphere. Kluwer Academic Publishers, Dordrecht, the Netherlands

    Google Scholar 

  • Kehoe DM and Grossman AR (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273: 1409-1412

    PubMed  Google Scholar 

  • Kehoe DM and Grossman AR (1997) New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system. J Bacteriol (in press)

  • Kendrick RE and Kronenberg GHM (1994) Photomorphogenesis in Plants. 2nd ed. Kluwer Academic Publishers, Dordrecht, the Netherlands

    Google Scholar 

  • Klose KE, Weiss DS and Kustu S (1993) Glutamate at the site of phosphorylation of nitrogen-regulatory protein NTRC mimics aspartyl-phosphate and activates the protein. J Mol Biol 232: 67-78

    PubMed  Google Scholar 

  • Lee T-Y, Makino K, Shinagawa H, Amemura M and Nakata A (1989) Phosphate regulon in members of the family Enterobacteriaceae: Comparison of the phoB-phoRoperons of Escherichia coli, Shigella dysenteriae, and Klebsiella pneumoniae. J Bacteriol 171: 6593-6599

    PubMed  Google Scholar 

  • Lomax TL, Conley PB, Schilling J and Grossman AR (1987) Isolation and characterization of light-regulated phycobilisome linker polypeptide genes and their transcription as a polycistronic mRNA. J Bacteriol 169: 2675-2684

    PubMed  Google Scholar 

  • Lukat GS, McCleary WR, Stock AM and Stock JB (1992) Phosphorylation of bacterial response regulator proteins by low molecular weight phospho-donors. Proc Natl Acad Sci USA 89: 718-722

    PubMed  Google Scholar 

  • Mazel D and Marliere P (1989) Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 341: 245-248

    PubMed  Google Scholar 

  • Mazel D, Bernard C, Schwarz R and Tandeau de Marsac N (1991) Characterization of two insertion sequences from the cyanobacterium Calothrixsp. PCC 7601. Mol Microbiol 5: 2165-2170

    PubMed  Google Scholar 

  • Mazel D, Guglielmi G, Houmard H, Sidler W, Bryant DA and Tandeau de Marsac N (1986) Green light induces transcription of the phycoerythrin operon in the cyanobacterium Calothrix7601. Nucleic Acids Res 14: 8279-8290

    PubMed  Google Scholar 

  • Mazel D, Houmard J and Tandeau de Marsac N (1988) A multigene family in Calothrixsp. PCC 7601 encodes phycocyanin, the major component of the cyanobacterial light-harvesting antenna. Mol Gen Genet 211: 296-304

    Article  Google Scholar 

  • Melchers LS, Thompson DV, Idler KB, Schilperoort RA and Hooykaas PJ (1986) Nucleotide sequence of the virulence gene virGof the Agrobacterium tumefaciensoctopine Ti plasmid: Significant homology between virGand the regulatory genes ompR, phoBand dyeof E. coli. Nucleic Acids Res 14: 9933-9942

    PubMed  Google Scholar 

  • Mettke I, Fiedler U and Weiss V (1995) Mechanism of activation of a response regulator: Interaction of NtrC-P dimers induces ATPase activity. J Bacteriol 177: 5056-5061

    PubMed  Google Scholar 

  • Oelmüller R, Conley PB, Federspiel N, Briggs WR and Grossman AR (1988a) Changes in accumulation and synthesis of transcripts encoding phycobilisome components during acclimation of Fremyella diplosiphonto different light qualities. Plant Physiol 88: 1077-1083

    Google Scholar 

  • Oelmüller R, Grossman AR and Briggs WR (1988b) Photoreversibility of the effect of red and green light pulses on the accumulation in darkness of mRNAs coding for phycocyanin and phycoerythrin in Fremyella diplosiphon. Plant Physiol 88: 1084-1091

    Google Scholar 

  • Parkinson JS and Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26: 71-112

    Article  PubMed  Google Scholar 

  • Perego M and Hoch JA (1991) Negative regulation of Bacillus subtilissporulation by spo0Egene product. J Bacteriol 173: 2514-2520

    PubMed  Google Scholar 

  • Perego M and Hoch JA (1996) Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet 12: 97-101

    PubMed  Google Scholar 

  • Porter G, Tredwell CJ, Searle GFW and Barber J (1978) Picosecond time-resolved energy transfer in Porphyridium cruentum. Part I. In the intact alga. Biochim Biophys Acta 501: 232-245

    PubMed  Google Scholar 

  • Posas R, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC and Saito H (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 ‘two-component’ osmosensor. Cell 86: 865-875

    Article  PubMed  Google Scholar 

  • Ravid S, Matsumura P and Eisenbach M (1986) Restoration of flagellar clockwise rotation in bacterial envelopes by insertion of the chemotaxis protein CheY. Proc Natl Acad Sci USA 83: 7157-7161

    PubMed  Google Scholar 

  • Rogowsky PM, Close TJ, Chimera JA, Shaw JJ and Kado CI (1987) Regulation of the virGenes of Agrobacterium tumefaciensplasmid pTiC58. J Bacteriol 169: 5101-5112

    PubMed  Google Scholar 

  • Schmidt-Goff CM and Federspiel NA (1993) In vivo and in vitro footprinting of a light-regulated promoter in the cyanobacterium Fremyella diplosiphon. J Bacteriol 175: 1806-1813

    PubMed  Google Scholar 

  • Schneider-Poetsch HAW, Braun B, Marx S and Schaumburg A (1991) Phytochromes and bacterial sensor proteins are related by structural and functional homologies. FEBS Lett 281: 245-249

    Article  PubMed  Google Scholar 

  • Searle GFW, Barber J, Porter G and Tredwell CJ (1978) Picosecond time-resolved energy transfer in Porphyridium cruentum. Part II. In the isolated light-harvesting complex (phycobilisomes). Biochim Biophys Acta 501: 246-256

    PubMed  Google Scholar 

  • Seki T, Yoshikawa H, Takahashi H and Saito H (1988) Nucleotide sequence of the Bacillus subtilis phoRgene. J Bacteriol 170: 5935-5938

    PubMed  Google Scholar 

  • Shattuck-Eidens DM and Kadner RJ (1983) Molecular cloning of the uhpregion and evidence for a positive activator for expression of the hexose phosphate transport system of Escherichia coli. J Bacteriol 155: 1062-1070

    PubMed  Google Scholar 

  • Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 139-216. Kluwer Academic Publishers, Dordrecht, the Netherlands

    Google Scholar 

  • Sobczyk A, Bely A, Tandeau de Marsac N and Houmard J (1994) A phosphorylated DNA-binding protein is specific for the red-light signal during complementary chromatic adaptation in cyanobacteria. Mol Microbiol 13: 875-885

    PubMed  Google Scholar 

  • Sobczyk A, Schyns G, Tandeau de Marsac N and Houmard J (1993) Transduction of the light signal during complementary chromatic adaptation in the cyanobacterium Calothrixsp. PCC 7601: DNA-binding proteins and modulation by phosphorylation. EMBO J 12: 997-1004

    PubMed  Google Scholar 

  • Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130: 82-91

    PubMed  Google Scholar 

  • Tandeau de Marsac N (1983) Phycobilisomes and complementary adaptation in cyanobacteria. Bulletin de L'Institut Pasteur 81: 201-254

    Google Scholar 

  • Tandeau de Marsac N and Houmard J (1993) Adaptation of cyanobacteria to environmental stimuli: New steps towards molecular mechanisms. FEMS Microbiol Rev 104: 119-190

    Article  Google Scholar 

  • Thümmler F, Algorra P and Fobo GM (1995) Sequence similarities of phytochrome to protein kinases: Implication for the structure, function and evolution of the phytochrome gene family. FEBS Lett 357: 149-155

    PubMed  Google Scholar 

  • Uhl MA and Miller JF (1996) Integration of multiple domains in a two-component sensor protein: The Bordetella pertussisBvgAS phosphorelay. EMBO J 15(5): 1028-1036

    PubMed  Google Scholar 

  • Vogelmann TC and Scheibe J (1978) Action spectrum for chromatic adaptation in the blue-green alga Fremyella diplosiphon. Planta 143: 233-239

    Google Scholar 

  • Wanner BL (1994) Phosphate-regulated genes for the utilization of phosphonates in members of the family Enterobacteriaceae. In Torriani-Gorini A, Yagil E and Silver S (ed) Phosphate in Microorganisms. Cellular and Molecular Biology, pp 215-222. ASM Press, Washington, DC

    Google Scholar 

  • Wanner BL and Wilmes-Riesenberg MR (1992) Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in the control of the phosphate regulation in an Escherichia coli. J Bacteriol 174: 2124-2130

    PubMed  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Yen H-C, Giovannoni JJ and Klee HJ (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270: 1807-1809

    PubMed  Google Scholar 

  • Wolfe AJ, Conley P, Kramer TJ and Berg HC (1987) Reconstitution of signaling in bacterial chemotaxis. J Bacteriol 169: 1878-1885

    PubMed  Google Scholar 

  • Wurtzel ET, Chou MY and Inouye M (1982) Osmoregulation of gene expression. I. DNA sequence of the ompRgene of the ompBoperon of Escherichia coliand characterization of its gene product. J Biol Chem 257: 13685-13691

    PubMed  Google Scholar 

  • Yamaguchi S, Aizawa S-I, Kihara M, Isomura M, Jones CJ and Macnab RM (1986) Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J Bacteriol 168: 1172-1179

    PubMed  Google Scholar 

  • Yamanaka G and Glazer AN (1980) Dynamic aspects of phycobilisome structure. Phycobilisome turnover during nitrogen starvation in Synechococcussp. Arch Microbiol 124: 39-47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grossman, A.R., Kehoe, D.M. Phosphorelay control of phycobilisome biogenesis during complementary chromatic adaptation. Photosynthesis Research 53, 95–108 (1997). https://doi.org/10.1023/A:1005807221560

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005807221560

Navigation