, Volume 36, Issue 3, pp 261–274 | Cite as

Carbon storage in forest soil of Finland. 2. Size and regional pattern



For confidently estimating the amount of carbon stored in boreal forestsoil, better knowledge of smaller regions is needed. In order to estimatethe amount of soil C in forests on mineral soil in Finland, i.e. excludingpeatland forests, and illustrate the regional patterns of the storage,statistical models were first made for the C densities of the organic and0–1 m mineral soil layers. A forest type, which indicated siteproductivity, and the effective temperature sum were used asexplanatory variables of the models. In addition, a constant C densitywas applied for the soil layer below the depth of 1 m on sortedsediments. Using these models the C densities were calculated for atotal of 46673 sites of the National Forest Inventory (NFI). The amountof the soil C was then calculated in two ways: 1) weighting the Cdensities of the NFI sites by the land area represented by these sites and2) interpolating the C densities of the NFI sites for 4 ha blocks to coverthe whole land area of Finland and summing up the blocks on forestedmineral soil. The soil C storage totalled 1109 Tg and 1315 Tg, whencalculated by the areal weighting and the interpolated blocks,respectively. Of that storage, 28% was in the organic layer, 68% inthe 0–1 m mineral soil layer and 4% in the layer below 1 m. The totalsoil C equals more than two times the amount of C in tree biomass and20% of the amount of C in peat in Finland. Soil C maps made usingthe interpolated blocks indicated that the largest soil C reserves arelocated in central parts of southern Finland. The C storage of theorganic layer was assessed to be overestimated at largest by 13% andthat of the 0–1 m mineral soil layer by 29%. The largest error in theorganic layer estimate is associated with the effects of forest harvestingand in the mineral soil estimate with the stone content of the soil.

boreal forests carbon balance geostatistics GIS soil carbon spatial variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AÐer JD, Botkin DB & Melillo JM (1978) Predicting the effects of different harvesting regimes on forest floor dynamics in northern hardwoods. Can. J. For. Res. 8: 306–315Google Scholar
  2. Ahlholm U & Silvola J (1990) Turvetuotannon ja turpeen käytön osuus maapallon ja Suomen hiilitaseessa-kirjallisuuskatsaus, Summary: The role of peat exploitation in altering the carÐon Ðalance in Finland and worldwide. Ministry of Trade and Industry, HelsinkiGoogle Scholar
  3. Anderson JM (1992) Responses of soils to climate change. Adv. Ecol. Res. 22: 163–210Google Scholar
  4. Anonymous (1992) SYSTAT for Windows: Statistics, Version 5 Edition, SYSTAT Inc. Evanston, IL.Google Scholar
  5. Anonymous (1993) GS + Geostatistics for the Environmental Sciences, Version 2.1, Gamma Design Software, Plainwell, MichiganGoogle Scholar
  6. Anonymous (1994): YearÐook of forest statistics. The Finnish Forest Research Institute, HelsinkiGoogle Scholar
  7. Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K & Schimel DS (1989) Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Sci. Soc. Am. J. 53: 800–805Google Scholar
  8. Cooper CF (1982) CarÐon storage in managed forests. Can. J. For. Res. 13: 155–166Google Scholar
  9. Covingtom WW (1981) Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 62(1): 41–48Google Scholar
  10. Davidson EA & LefeÐvre PA (1993) Estimating regional carÐon stocks and spatially covarying edaphic factors using soil maps at three scales. Biogeochemistry 22: 107–131Google Scholar
  11. Eronen M, Glückert G, Van der Plassche O, Van der Plicht J & Rantala P (1995) Land uplift in the Olkiluoto-Pyhäjärvi area, southwestern Finland, during the last 8000 years. Report YJT-95-17, Teollisuuden Voima OY, HelsinkiGoogle Scholar
  12. Flanagan PW & Van Cleve K (1983) Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can. J. For. Res. 13: 795–817Google Scholar
  13. Grigal DF & Ohmann LF (1992) CarÐon storage in upland forests of the Lake States. Soil Sci. Soc. Am. J. 56: 935–943Google Scholar
  14. Heikinheimo O (1915) Kaskiviljelyksen vaikutus Suomen metsiin. Keisarillisen Senaatin Kirjapaino, HelsinkiGoogle Scholar
  15. Isaaks EH & Srivastava RM (1989): Applied Geostatistics. 1st edn. Oxford University Press, New York, OxfordGoogle Scholar
  16. Kauppi PE, Tomppo E & Ferm A (1995) C and N storage of living trees within Finland since 1950s. Plant and Soil 168–169: 633-638Google Scholar
  17. Kellomäki S & Kolström M(1992) Simulation of tree species composition and organic matter accumulation in Finnish Ðoreal forests under changing climatic conditions. Vegetatio 102: 47–68Google Scholar
  18. Kivekäs J (1939): Kaskiviljelyksen vaikutus eräisiin maan ominaisuuksiin, Referat: ÜÐer den Einfluss der Brandkultur auf einige Eigensaften des Bodens. Commun. Inst. For. Fenn. 27(2): 1–44Google Scholar
  19. Lappalainen E & Hänninen P (1993) Suomen turvevarat, Summary: The peat reserves in Finland. Geological Survey of Finland, Report of Investigation 117: 1–115Google Scholar
  20. Liski J & Westman CJ (1995) Density of organic carÐon in soil at coniferous forest sites in southern Finland. Biogeochemistry 29(3): 183–197Google Scholar
  21. Liski J & Westman CJ (1997) CarÐon storage in forest soil of Finland 1.Effect of thermoclimate. Biogeochemistry 36: 239–260Google Scholar
  22. Ojansuu R & Henttonen H (1983) Kuukauden keskilämpötilan, lämpösumman ja sademäärän paikallisten arvojen johtaminen ilmatieteen laitoksen mittaustiedoista, Summary: Estination of local values of monthly mean temperature, effective temperature sum and precipitation sum from measurements made Ðy the Finnish metorological office. Silva Fennica 17(2): 143–160Google Scholar
  23. Post WM, Emanuel WR, Zinke PJ & StangenÐerger AG (1982) Soil carÐon pools and world life zones. Nature 298: 156–159Google Scholar
  24. Schlesinger WH (1977) CarÐon Ðalance in terrestrial detritus. Ann. Rev. Ecol. Syst. 8: 51–81 StarrMR(1991) Soil formation and fertility along a 5000 year chronosequence. In: Pulkkinen E (Ed) Environmental Geochemistry in Northern Finland (pp 99-104Ed). Geological Survey of Finland, Special Paper 9, HelsinkiGoogle Scholar
  25. Stone EL, Harris WG, Brown RB & Kuehl RJ (1993) CarÐon storage in Florida Spodosols. Soil Sci. Soc. Am. J. 57: 179–182Google Scholar
  26. Tamm CO & Holmen H (1967) Some remarks on soil organic matter Turn-over in Swedish podzol profiles. Meddelelser fra det Norske skogforsöksvesen 23(hefte 85): 69–88Google Scholar
  27. Tamm CO & ¨ Ostlund HG (1960) RadiocarÐon dating on soil humus. Nature 185: 706–707Google Scholar
  28. Tamminen P (1991) Kangasmaan ravinnetunnusten ilmaiseminen ja viljavuuden alueellinen vaihtelu Etelä-Suomessa, Summary: Expression of soil nutrient status and regional variation in soil fertility of forested sites in southern Finland. Folia Forestalia 777: 1–40Google Scholar
  29. Van Cleve K & Powers RF (1995) Soil carÐon, soil formation, and ecosystem development. In: McFee WW & Kelly JM (Eds) CarÐon Forms and Functions in Forest Soils (pp 155-200). Soil Science Society of America Inc., MadisonGoogle Scholar
  30. Viro PJ (1958) Suomen metsämaiden kivisyydestä, Summary: Stoniness of forest soil in Finland. Commun. Inst. For. Fenn. 49(4): 1–45Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

    • 1
    • 1
  1. 1.Department of Forest EcologyUniversity of HelsinkiFinland

Personalised recommendations