Skip to main content
Log in

Oxidized Nitrogen in the Remote Pacific: The Role of Electrical Discharges over the Oceans

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Simulations of oxidized nitrogen performed withglobal transport tracer models systematicallyunderestimate the concentrations of total nitrate atremote marine locations in the Mid-Pacific. Higheremission rates in the models of nitrogen oxides(\({\text{NO}}_x = {\text{NO + NO}}_{\text{2}} \)) from continental sources or alarger influx from the stratosphere do not seem tobe able to account for the shortfall. We are led toconclude that there has to be a substantial sourcelocated in oceanic areas. We speculate that\({\text{NO}}_x \)-emission from electrical discharges overthe oceans could be the source we are looking for.Airborne observations of atmospheric concentrationsof oxidized nitrogen and ozone in the remoteatmosphere and observations of nitrate wetdeposition in remote sites are used as additionalconstraints to check the plausibility of thishypothesis. We find that a larger emission of\({\text{NO}}_x \) due to lightning activity over the oceansindeed results in a much improved simulation oftotal nitrate in the remote Pacific, particularly inthe Equatorial and Tropical South Pacific and thatsuch a scenario is generally consistent withavailable observations of nitrate wet deposition andatmospheric concentrations of oxidized nitrogen andozone. An alternative hypothesis is that there is ahitherto unknown in situ source of \({\text{NO}}_x \) over thePacific Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayers, G., Gillet, R., and Hara, H., 1995: Acidic Deposition in East Asia and Oceania, World Meteorological Organization, report in print.

  • Benkovitz, C., Scholtz, M., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E., Spiro, P., Logan, J., and Graedel, T., 1996: Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res., in press.

  • Carroll, M., Hastie, D., Ridley, B., Rodgers, M., Torres, A., Davis, A., Bradshaw, J., Sandholm, S., Schiff, H., Karecki, D., Harriss, G., Mackay, G., Gregory, G., Condon, E., Trainer, M., Hubler, G., Montzka, D., Madronich, S., Albritton, D., Singh, H., Beck, S., Shipman, M., and Bachmeier, A., 1990: Aircraft measurements of NOx over the eastern Pacific and continental United States and implications for ozone production, J. Geophys. Res. 95 D7, 10205–10233.

    Google Scholar 

  • Cooray, V., 1996: Energy dissipation in lightning flashes. Accepted for publication in J. Geophys. Res.

  • Crutzen, P., 1995: Ozone in the troposphere, in H. Singh (ed.), Composition, Chemistry, and Climate of the Atmosphere, Van Nostrand Reinold Pub., New York, pp. 349–393.

    Google Scholar 

  • Crutzen, P. and Zimmermann, P., 1991: The changing photochemistry of the troposphere, Tellus 43AB, 136–151.

    Google Scholar 

  • Dentener, F. and Crutzen, P., 1993: Reaction of N2O5 on tropospheric aerosols: Impact on the global distributions of NOx, O3 and OH, J. Geophys. Res. 98, 7149–7163.

    Google Scholar 

  • Dentener, F., Hein, R., and Roelofs, G., 1995: A comparison of background ozone concentrations calculated by the three models ECHAM, MOGUNTIA and TM2 with measurements, Report cm-88, International Meteorological Institute in Stockholm, Department of Meteorology, Stockholm University.

  • Dentener, F., Carmichel, G., Zhang, Y., Lelieveld, J., and Crutzen, P., 1996: The role of mineral aerosol as a reactive surface in the global troposphere, J. Geophys. Res., in press.

  • Drummond, J., Ehhalt, D., and Volz, A., 1988: Measurements of nitric oxide between 0–12 km altitude and 67° N to 60° S latitude obtained during STRATOZ III, J. Geophys. Res. 93 D12, 15831–15849.

    Google Scholar 

  • Feichter, J. and Crutzen, P., 1990: Parameterization of vertical tracer transport due to cumulus convection in a global transport model and its evaluation with 222Radon measurements, Tellus 42B, 100–117.

    Google Scholar 

  • Gallardo, L. and Rodhe, H., 1995: Evaluation of a global 3-D model of tropospheric oxidized nitrogen, Report cm-85, International Meteorological Institute in Stockholm, Department of Meteorology, Stockholm University.

  • Gallardo, L., Kjellström, E., and Feichter, J., 1995: Representation of the global emission of oxidized nitrogen by lightning discharges in large-scale models, Report cm-87, International Meteorological Institute in Stockholm, Department of Meteorology, Stockholm University.

  • Gallardo and Cooray, 1996: Could cloud-to-cloud discharges be as effective as cloud-to-ground discharges in producing NOx? Tellus B 48, 641–651.

    Google Scholar 

  • Ganzeveld, L. and Lelieveld, J., 1995: Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive gases, J. Geophys. Res. 100, 20999–21012.

    Google Scholar 

  • Gille, J., Bailey, P., and Craig, C., 1987: Proposed reference model for nitric acid, Adv. Space Res. 7, 25–35.

    Google Scholar 

  • Goldembaum G. and Dickerson R., 1993: Nitric oxide production by lightning discharges, J. Geophys. Res. 98, 18333–18338.

    Google Scholar 

  • Granat, L., Suksomsankh, Simachaya, S., Tabucanon, M., and Rodhe, H., 1995: Regional background acidity and chemical composition of precipitation in Thailand, Atmos. Environ. 30, 1589–1596.

    Google Scholar 

  • Holton, J., 1990: On the global exchange of mass between the stratosphere and troposphere, J. Atmos. Sci. 47, 392–395.

    Google Scholar 

  • Holton, J., Haynes, P., McIntyre, M., Douglas, A., Rood, R., and Pfister, L., 1996: Stratospheretroposphere exchange, Rev. Geophys., in press.

  • Hubler, G., Fahey, D., Ridley, B., Gregory, G., and Fehsenfeld, F., 1992: Airborne measurements of total reactive odd nitrogen (NOy), J. Geophys. Res. 97, 9833–9850.

    Google Scholar 

  • IPCC, 1992: Climate Change: The IPCC Supplementary Report, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Isaksen, I. and Rodhe, H., 1978: A two-dimensional model for the global distribution of gases and aerosol particles in the troposphere, Report AC-47, International Meteorological Institute, University of Stockholm.

  • Kanakidou, M., Singh H., Valentin, K., and Crutzen, P., 1991: A two-dimensional study of ethane and propane oxidation in the troposphere, J. Geophys. Res. 96, 15395–15413.

    Google Scholar 

  • Kanakidou, M., Crutzen, P., Zimmermann, P., and Bonsang, B., 1992: A 3-D global study of the photochemistry of ethane and propane in the troposphere: production and transport of organic nitrogen compounds, in H. van Dop and G. Kallos (eds.), Air Pollution Modeling and Its Application {vnIX}, Plenum Press, New York.

    Google Scholar 

  • Kasibhatla, P., Levy, H., Moxim, W., and Chameides, W., 1991: The relative impact of stratospheric photochemical production on tropospheric NOy levels: A model study, J. Geophys. Res. 96, 18631–18646.

    Google Scholar 

  • Kasibhatla, P., Levy, H., and Moxim, W., 1993: Global NOx, HNO3, PAN and NOy distributions from fossil fuel combustion emissions: A model study, J. Geophys. Res. 98, 7165–7180.

    Google Scholar 

  • Komhyr, W., Oltmans, S., Franchois, P., Evans, W., and Mathews, W., 1989: The latitudinal distribution of ozone to 35 km altitude from ECC ozone sonde observations, 1985–1987, in R. Bojkov and P. Fabian (eds.), Ozone in the Atmosphere, A. Deepak Publishing, Hampton, Virginia, pp. 147–150.

    Google Scholar 

  • Kotaki, M. and Katoh, C., 1983: The global distribution of thunderstorm activity observed by the Ionosphere Sounding Satellite (ISS-b), J. Atmos. Terr. Phys. 45, 833–847.

    Google Scholar 

  • Kowalczyk, M. and Bauer, E., 1982: Lightning as a source of NO in the troposphere, Rep. FAA-EE-824. U.S. Dept. of Transp., Washington, D.C.

  • Langner, J. and Rodhe, H., 1991: A global three-dimensional model of the tropospheric sulfur cycle, J. Atmos. Chem. 13, 225–265.

    Google Scholar 

  • Mackerras, D. and Darveniza, M., 1994: Latitudinal variation of lightning occurrence characteristics, J. Geophys. Res. 99, 10813–10821.

    Google Scholar 

  • Molinié, J. and Pontakis, C., 1995: A climatological study of tropical thunderstorm clouds and lightning frequencies on the French Guyana coast, Geophys. Res. Lett. 22, 1085–1088.

    Google Scholar 

  • Murphy, D., Fahey, D., Proffitt, M., Liu, S., Chan, K., Eubank, C., Kawa, S., and Kelly, K., 1993: Reactive nitrogen and its correlation with ozone in the lower stratosphere and upper troposphere, J. Geophys. Res. 98, 8751–8773.

    Google Scholar 

  • Orville, R. and Henderson, R., 1986: Global distribution of midnight lightning: September 1977 to August 1978, Mon. Weather. Rev. 114, 2460–2653.

    Google Scholar 

  • Penner, J., Atherton, C., Dignon, J., Ghan, S., and Walton, J., 1991: Tropospheric nitrogen: A three dimensional study of sources, distributions and deposition, J. Geophys. Res. 96, 959–990.

    Google Scholar 

  • Petersen, W., Rutledge, S., and Orville, R., 1996: Cloud-to-ground lightning observations from TOGA COARE: Selected results and lightning location algorithms, Mon. Wea. Rev. 124, 602–620.

    Google Scholar 

  • Price, C. and Rind, D., 1992: A simple lightning parameterization for calculating global lightning distributions, J. Geophys. Res. 97, 9919–9933.

    Google Scholar 

  • Prospero, J. and Savoie, D., 1989: Effect of continental sources on nitrate concentrations over the Pacific ocean, Nature 339, 687–689.

    Google Scholar 

  • Ridley, B., Walega, J., Dye, J., and Grahek, F., 1994: Distribution of NO, NOx, NOy and O3 to 12 km altitude during the summer monsoon season over New Mexico, J. Geophys. Res. 99, 25519–25534.

    Google Scholar 

  • Roeckner, E., Arpe, K., Bengtsson, L., Brinkop, S., Dümenil, L., Esch, M., Kirk, E., Lunkeit, M., Ponater, B., Rockel, B., Sausen, R., Schelse, U., Schubert, S., and Windelband, M., 1992: Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution, Rep., No. 93, Max-Planck-Institute for Meteorology, Hamburg, Germany.

    Google Scholar 

  • Sanhueza, E., Elbert, W., Rondón, A., Arias, M. C., and Hermoso, M., 1989: Organic and inorganic acids in rain from a remote site of the Venezuelan savannah, Tellus 41B, 170–176.

    Google Scholar 

  • Savoie, D., Prospero, J., Saltzman, E., 1989a: Nitrate, non-seasalt sulfate and methanesulfonate over the Pacific Ocean, in Chemical Oceanography 10, 219–250.

    Google Scholar 

  • Singh, B., Herlth, D., Kolyer, R., Salas, L., Bradshaw, J., Sandholm, S., Davis, D., Crawford, J., Kondo, Y., Koike, M., Talbot, R., Gregory, G., Sachse, G., Browell, E., Blake, R., Rowland, F., Newell, R., Merrill, J., Heikes, B., Liu, S., Crutzen, P., Kanakidou, M., 1996: Reactive nitrogen and ozone over the western Pacific: Distribution, partitioning and sources, J. Geophys. Res. 101, 1793–1808.

    Google Scholar 

  • Turman, B. and Edgar, B., 1982: Global lightning distribution at dawn and dusk, J. Geophys. Res. 87, 1191–1206.

    Google Scholar 

  • Valentin, K., 1991: Numerical modeling of climatic and anthropogenic influences on global atmospheric chemistry since the last glacial maximum, Ph.D. Thesis, University of Mainz, Germany, 238 pp.

    Google Scholar 

  • Warneck, P., 1988: In Dmowska and Holton (eds.), Chemistry of the Natural Atmosphere, Int. Geophys. Ser. 41, Academic Press, New York.

    Google Scholar 

  • Zimmermann, P., 1988: MOGUNTIA: A handy global tracer model, in van Dop (ed.), Air Pollution Modeling and Its Applications VI, Plenum, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GALLARDO, L., RODHE, H. Oxidized Nitrogen in the Remote Pacific: The Role of Electrical Discharges over the Oceans. Journal of Atmospheric Chemistry 26, 147–168 (1997). https://doi.org/10.1023/A:1005738402496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005738402496

Navigation