Skip to main content
Log in

Retinoids and the control of growth/death decisions in human neuroblastoma cell lines

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Cell proliferation, the balance between mitosis and apoptosis is the result of the continuous integration of a number of different signal transduction pathways stimulated in a cell at any given point in its life. Neuroblastoma cells regulate the switch between mitosis and death, according both to intrinsic factors and extrinsic factors, such as growth factor withdrawal and action of the vitamin A derivative, retinoic acid. In this review, we describe the balance of some factors regulating growth and death of human neuroblastoma cells in vitro. These dynamic studies are necessarily performed on cell lines, which offer controlled conditions enabling the disection of the complex stimuli mediating survival and growth (IGF, trk, BDNF) and death (transglutaminase, free radicals, Bcl-2). Although the conclusions drawn may therefore not be directly applicable to tumour cells in vivo, the results herein discussed are of sufficient significance to warrant in vivo relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melino G, Knight RA, Thiele CJ: New insight in the biology of neuroectodermal tumors. Cancer Res 53: 926–929, 1993

    Google Scholar 

  2. Biedler JL, Helson L, Spengler BA: Morphology and growth, tumorigenicity and cytogenetics of human neuroblastoma cells in continous culture. Cancer Res 33: 2643, 1973

    Google Scholar 

  3. Biedler JL, Spengler BA, Chang TD, Ross RA: Transdifferentiation of human neuroblastoma cells results in coordinate loss of neuronal and malignant properties. Prog Clin Biol Res 271: 265, 1988

    Google Scholar 

  4. Ross RA, Spengler BA, Biedler JL: Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 71: 741, 1983

    Google Scholar 

  5. Ciccarone V, Spengler BA, Meyers MB, Biedler JL, Ross RA: Phenotypic diversifications in human neuroblastoma cells: expression of distinct neural crest lineages. Cancer Res 49: 219–225, 1989

    Google Scholar 

  6. Seilheimer B, Schachner M: Studies of adhesion molecules mediating interactions between cells of peripheral nervous system indicate a major role for L1 in mediating sensory neuron growth on Schwann cells in culture. J Cell Biol 107: 341–351, 1988

    Google Scholar 

  7. Santoni MJ, Barthels D, Vopper G, Boned A, Goridis C, Wille W: Differential exon usage involving an unusual splicing mechanism generates at least eight types of NCAM cDNA in mouse brain. EMBO J 8: 385–392, 1989

    Google Scholar 

  8. Kadman G, Kowitz A, Altevogt P, Schachner M: The neural cell adhesion molecule NCAM enhances L1-dependent cell-cell interactions. J Cell Biol 110: 193–208, 1990

    Google Scholar 

  9. Melino G, Farrace, MG, Ceru MP, Piacentini M: Correlation between transglutaminase activity and polyamine levels in retinoic acid and α-difluoromethylornitine induced differentiation of human neuroblastoma cells. Exp Cell Res 179: 429–445, 1988

    Google Scholar 

  10. Melino G, Piacentini M, Patel K, Annicchiarico-Petruzzelli M, Piredda L, Kemshead JT: Retinoic acid and α-difluoromethylornithine induce different expression of neuralspecific cell adhesion molecules in differentiating neuroblastoma cells. Prog Clin Biol Res 366: 283–292, 1991

    Google Scholar 

  11. Patel K, Kiely F, Phimister E, Melino G, Rathjen F, Kemshead JT: The 220/240 kDa antigen recognised by monoclonal antibody UJ 127.11 on neural tissues and tumours is human L1 adhesion molecule. Hybridoma 10(4): 481–491, 1991

    Google Scholar 

  12. Barbacid M: The Trk family of neurotrophin receptors. J Neurobiol 25: 1386–1403, 1994

    Google Scholar 

  13. Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM: Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328: 847–854, 1993

    Google Scholar 

  14. Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM: Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14: 759–767, 1994

    Google Scholar 

  15. Suzuki T, Bogenmann E, Shimada H, Stram D, Seeger RC: Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J Natl Cancer Inst 85: 377–384, 1993

    Google Scholar 

  16. Kaplan D, Matsumoto K, Lucarelli E, Thiele CJ: Induction of TrkB by Retinoic Acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Neuron 11: 321–331, 1993

    Google Scholar 

  17. Matsushima H, Bogenmann E: Expression of trkA cDNA in neuroblastoma mediates differentiation in vitro and in vivo. Mol Cell Biol 13: 7447–7456, 1993

    Google Scholar 

  18. Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ: Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 55: 1798–806, 1995

    Google Scholar 

  19. Lotan R, Lotan D, Sacks PG: Inhibition of tumour cell growth by retinoids. Meth Enzymol 190: 100–111, 1990

    Google Scholar 

  20. Sporn MB, Roberts AB: Role of retinoids in differentiation and carcinogenesis. Cancer Res 43: 3034–3040, 1983

    Google Scholar 

  21. Davies PJA, Basilion JP, Chiocca EA, Johnson J, Poddar S, Stein J: Retinoids as generalized regulators of cellular growth and differentiation. Am J Med Sci 296: 164–170, 1988

    Google Scholar 

  22. Piacentini M, Fesus L, Farrace MG, Ghibelli L, Piredda L, Melino G: The expression of ‘tissue’ transglutaminase in two human cancer cell lines is related with the programmed cell death (apoptosis). Eur J Cell Biol 54: 246–254, 1991

    Google Scholar 

  23. Piacentini, M, Annichiarico-Petruzzelli M, Oliverio S, Piredda L, Biedler JL, Melino G: Phenotype-specific tissue transglutaminase regulation in human neuroblastoma cells in response to retinoic acid: correlation with cell death by apoptosis. Int J Cancer 52: 271, 1992

    Google Scholar 

  24. Gaetano C, Matsumoto K, Thiele CJ: Retinoic acid resistant neuroblastmoma cells and the expression of IGF-II. Prog. Clin Biol Res 366: 165–172, 1991

    Google Scholar 

  25. Melino G, Stephanou A, Annicchiarico-Petruzzelli M, Knight RA, Finazzi-Agró A, Lightman SL: Modulation of IGF-2 expression during growth and differentiation of human neuroblastoma cells: retinoic acid may induce IGF-II. Neurosc Lett 151: 187–191, 1993

    Google Scholar 

  26. Matsumoto K, Lucarelli E, Minniti C, Gaetano C, Thiele CJ. Signals transduced via IGF-R mediate resistance to retinoic acid-induced cell growth arrest in a human neuroblastoma cell line. Cell Death Diff 1: 49–58, 1994

    Google Scholar 

  27. Li C, Einhorn P, Reynolds CP: Expression of retinoic acid receptors α, βand γ in human neuroblastoma cell lines. Prog Clin Biol Res 385: 221–227, 1994

    Google Scholar 

  28. Haber M, Madafiglio J, Borodow S, Gilbert J, Cheung B, Marshall GM, Norris MD: Expression of retinoic acid-responsive genes in primary neuroblastomas. Prog Clin Biol Res 385: 245–251, 1994

    Google Scholar 

  29. Marshall GM, Cheung B, Stacey KP, Camacho ML, Simpson AM, Kwan E, Smith, S, Havber M, Norris MD: Increased retinoic acid gamma expression suppresses the malignant phenotype and alters the differentiation potential of human neuroblastoma cells. Oncogene 11: 485–491, 1995

    Google Scholar 

  30. El-Badry O, Romanus JA, Helman LJ, Cooper MJ, Rechler M, Israel MA: Autonomous growth of a human neuroblastoma cell line is mediated by insulin-like growth factor II. J Clin Invest 84: 829–839, 1989

    Google Scholar 

  31. El-Badry O, Helman LJ, Chatten J, Steinberg SM, Evans AE, Israel MA: Insulin-like growth factor II-mediated proliferation of human neuroblastoma. J Clin Invest 87: 648–57, 1991

    Google Scholar 

  32. Daughaday WH, Rotwein P: IGF-I and-II. Peptide, mRNA and gene structures, serum and tissue concentrations. Endocrine Rev 10: 68–86, 1989

    Google Scholar 

  33. Ceda GP, Fielder PJ, Henzel WJ, Louie A, Donovan SM, Hoffman AR, Rosenfeld RG: Differential effects of IGF-1 and IGF-2 on the expression of IGF-binding proteins in a rat neuroblastoma cell line: isolation and characterization of two forms of IGFBP-4. Endocrinology 128: 2815–2824, 1991

    Google Scholar 

  34. Bernardini S, Cianfarani S, Spagnoli A, Melino G, Annicciarico-Petruzzelli M, Massoud R, Boscherini B, Finazzi-Agró A, Rosenfeld RG, Federici G: Expression and down-regulation by retinoic acid of IGFBP-2 and-4 in medium from human neuroblastoma cells. J Neuroendocrinol 6: 409–413, 1994

    Google Scholar 

  35. Bernardini S, Cianfarani S, Pianca C, Mossud R, Germani D, Federici G, Melino G: Insulin-like Growth Factor Binding Protein-1 serum levels in neuroblastoma. Clin Chem Enzymol Comm 6: 359–363, 1995

    Google Scholar 

  36. De Bold CR, Menefee JK, Nicholson WE, Orth DN: POMC gene is expressed in many normal human tissues and in tumours, not associated with the ectopic adrenocorticotropin syndrome. Mol Endocrinol 2: 862–870, 1988

    Google Scholar 

  37. Yesner R: Spectrum of lung cancer and ectopic hormones. Pathol Ann 13: 217–241, 1978

    Google Scholar 

  38. Usui T, Nakai Y, Tsukada T, Jingami H, Takahashi H, Imura H: Expression of adrenocorticotrophin-releasing hormone precursor gene in placenta and in other non-hypothalamic tissues in man. Mol Endocrinol 2: 871–875, 1989

    Google Scholar 

  39. Di Marzo V, Etienne A, Marino G, Morris HR, Palmisano A: Beta-endorphin in neuroblastoma × glioma hybrid cells. Neuropeptides 6: 53–57, 1985

    Google Scholar 

  40. Zagon IS, McLaughin PJ, Goodman SR Rhodes RE: Opioid receptors and endogenous opioids are present in diverse human and animal cancers. J Natl Cancer Inst 79: 1059–1065, 1987

    Google Scholar 

  41. Zagon IS, McLaughin PJ: Opioid antagonist modulation of murine neuroblastoma: a profile of cell proliferation and opioid peptides and receptors. Brain Res 480: 16–28, 1989b

    Google Scholar 

  42. Yu VC, Richards ML, Sadee W: A human neuroblastoma cell line expresses μ and δ opioid receptor sites. J Biol Chem 261: 1065–1070, 1986

    Google Scholar 

  43. Yu VC, Sadee W: Efficacy and tolerance of narcotic analgesics at the Mu opioid receptor in differentiated human neuroblastoma cells. J Pharmacol Exper Ther 245: 350–355, 1988

    Google Scholar 

  44. Zagon IS, Goodman SR, McLaughin PJ: Characterization of opioid binding sites in murine neruoblastoma. Brain Res 449: 80–88, 1988

    Google Scholar 

  45. Zagon IS, Goodman SR, McLaughin PJ: Characterization of zeta (z): a new opioid receptor involved in growth. Brain Res 482: 297–305, 1989

    Google Scholar 

  46. De Laurenzi V, Melino G, Knight RA, Pierotti AR, Cohen P: Modulation of POMC expression in human neuroectodermal cells. Biochem Biophys Res Comm 197(3): 1402–1409, 1993

    Google Scholar 

  47. McLaughin PJ, Zagon IS: Modulation of human neuroblastoma transplant into nude mice by endogenous opioid systems. Life Sci 41: 1465–1472, 1988

    Google Scholar 

  48. McLaughin PJ, Zagon IS: Endogenous opioid system regulate growth of neurotumour cells in culture. Neurosci Soc (Abstract) 13: 575, 1987

    Google Scholar 

  49. Gilman SC, Schwartz JM, Milner RJ, Bloom FE, Feldman JD: Beta-endorphin enhances lymphocyte proliferative responses. Proc Natl Acad Sci USA 79: 4226–4230, 1982

    Google Scholar 

  50. Johnson HM, Smith EM, Torres BA, Blalock JE: Regulation of the in vitro antibody response by neuroendocrine hormones. Proc Natl Acad Sci USA 79: 4171–4174, 1982

    Google Scholar 

  51. Matthews PM, Froelich CJ, Sibbitt WL, Bankhurst AD: Enhancement of natural cytotoxicity by beta-endorphin. J Immunol 130: 1658–1662, 1983

    Google Scholar 

  52. Williamson SA, Knight RA, Lightman SL, Hobbs JR: Differential effects of beta-endorphin on human natural killing. Brain Behaviour Immunol 1: 329–334, 1987

    Google Scholar 

  53. Williamson SA, Knight RA, Lightman SL, Hobbs JR: Effect of beta-endorphin on specific immune responses in man. Immunology 65: 47–52, 1988

    Google Scholar 

  54. Evans AE, Gerson J, Schnaufer L: Spontaneous regression of neuroblastoma. Natl Cancer Inst Monography 44: 49–54, 1976

    Google Scholar 

  55. Vose BM, Bonnard GD: Specific cytotoxicity against autologous tumour and proliferative responses of human lymphocytes grown in interleukin 2. Int J Cancer 29: 33–39, 1982

    Google Scholar 

  56. Van Meir E, Sawamura Y, Diserens AC, Hamou MF, De Tribolet N: Human glioblastoma cells release interleukin 6 in vitro and in vivo. Cancer Res 50: 6683–6688, 1990

    Google Scholar 

  57. Fukumoto S, Matsumoto T, Harada SI, Fujisaki J, Kawano M, Ogata E: Pheochromocytoma with pyrexia and marked inflammatory signs: a paraneoplastic syndrome with possible relation to interleukin 6 production. J Clin Endocrinol Metab 73: 877–881, 1991

    Google Scholar 

  58. Candi E, Knight RA, Spinedi A, Guerrieri P, Melino G: A possible role growth factor role of IL-6 in neuroectodermal tumours. J Neuro-Oncol 31: 115–122, 1997 (This issue)

    Google Scholar 

  59. Nicholson DW, Ali A, Thornberry NA, Vailiancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik Y, Munday NA, Raju SM, Smulson ME, Yamin TT, Yu VL, Miller DK: Identification and inhibition of the ICE/ced-3 preotease necessary for mammalian apoptosis. Nature 376: 37–43, 1995

    Google Scholar 

  60. Yanaihara N, Kobayashi S, Sato H, Yanaihara C, Sakgami M, Sakura N, Hashimoto T, Ishikawa S, Iwanaga T, Fujita T: Vasoactive intestinal peptide-like immunoreactivity in a human neuroblastoma cell line and the coexistence of other neuropeptide immunoreactivity in the cell line. Endocrinol Japan 27, suppl. 1: 37–42, 1980

    Google Scholar 

  61. Yanaihara N, Suzuki T, Sato H, Hoshino M, Okaru Y, Yanaihara C: Dibutyryl cAMP stimulation of production and release of VIP-like immunoreactivity in a human neuroblastoma cell line. Biomed Res 2: 728–734, 1981

    Google Scholar 

  62. Brick PL, Hewlett AC, Beinfeld MC: Synthesis and release of vasoactive intestinal peptide (VIP) by mouse neuroblastoma cells: modulation by ciclic nucleotides and ascorbic acid. Peptides 6: 1075–1078, 1985

    Google Scholar 

  63. Svoboda M, Gregoire A, Yanaihara C, Yanahiara N, Christophe J: Identification of two pro-VIP forms in a human neuroblastoma cell line. Peptides 7, suppl: 1: 7–15, 1986

    Google Scholar 

  64. Muller JM, Lolait SJ, Yu VC, Sadee W, Waschek JA: Functional vasoactive intestinal polypeptide (VIP) receptors in human neuroblastoma subclones that contain VIP precursor mRNA and release VIP-like substances. J Biol Chem 264: 3647–3650, 1989

    Google Scholar 

  65. Waschek JA, Muller JM, Duar DS, Sadee W: Retinoic acid enhances VIP receptor expression and responsiveness in human neuroblastoma cell SH-SY5Y. FEBS Lett 250: 611–614, 1989

    Google Scholar 

  66. Maggi M, Baldi E, Finetti G, Franceschelli F, Brocchi A, Lanzillotti R, Serio M, Camboni MG, Thiele, CJ: Identification, characterization, and biological activity of somatostatin receptors in human neuroblastoma cell lines. Cancer Res 54(1): 124–33, 1994

    Google Scholar 

  67. Gozes I, Nakai H, Byers M, Avidos R, Weinstein Y, Shari Y, Shows TB: Sequential expression in the nervous system of CMYB and VIP genes, located in human chromosomal region 6q24. Som Cell Mol Gen 15: 305–313, 1987

    Google Scholar 

  68. Thiele CJ, Cohen PS, Israel MA: Regulation of CMYB expression in human neuroblastoma cells during retinoic acid-induced differentiation. Mol Cel Biol 8: 1677–1683, 1988

    Google Scholar 

  69. Carvalho KD, De Laurenzi V, Melino G, Cohen P: Modulation of activity of a novel thermolysin-like metallo-endopeptidase during retinoic acid-induced differentiation of human neuroectodermal tumour cell lines. Biochem Biophys Res Comm 191: 172–179, 1993

    Google Scholar 

  70. Carvalho KM, De Laurenzi V, Melino G, Cohen P: Human neuroblastoma cells express a novel metallo-endopeptidase activity able to inactivate atrial natriuretic factor: inhibition during retinoic acid-induced differentiation. Braz J Med Biol Res 26(11): 1181–1186, 1994

    Google Scholar 

  71. Draoui M, Bellincampi L, Hospital V, Cadel S, Foulon T, Prat A, Barré M, Reichert U, Melino G, Cohen P: Expression and retinoid modulation of N-arginine dibasic convertase and an aminopeptidase-B in human neuroblastoma cell lines. J Neuro-Oncol 31: 99–106, 1997

    Google Scholar 

  72. Ellis RE, Yuan J, Horvitz HR: Mechanism and functions of cell death. Annu Rev Cell Biol 7: 663–673, 1991

    Google Scholar 

  73. Wyllie AH, Kerr JFR, Currie AR: Cell death the significance of apoptosis. Int Rev Cytol 68: 251, 1980

    Google Scholar 

  74. Wyllie AH: Apoptosis: Cell death in tissue regulation. J Pathol 153: 313, 1987

    Google Scholar 

  75. Fesus L, Davies PJA, Piacentini M: Apoptosis: molecular mechanisms in programmed cell death. Eur J Cell Biol 56: 170–177, 1991

    Google Scholar 

  76. Fesus L, Tarcsa E, Kedei N, Autuori F, Piacentini M: Degradation of cells dying by apoptosis leads to accumulation of ε(γ-glutamyl)lysine isodipeptide in culture fluid and blood. FEBS Lett 284: 109, 1991

    Google Scholar 

  77. Fesus L, Thomazy V, Falus A: Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett 224: 104, 1987

    Google Scholar 

  78. Fesus L, Thomazy V, Autuori F, Cerú MP, Tarcsa E, Piacentini M: Apoptotic hepatocytes become insoluble in detergents and chaotropic agents as a result of transglutaminase action. FEBS Lett 245: 150–154, 1989

    Google Scholar 

  79. Buttyan R, Olsson CA, Pintar J, Chang C, Bandyk M, Poying NG, Sawczuk IS: Induction of TRPM-2 gene in cells undergoing programmed cell death. Mol Cell Biol 9: 3473–3479, 1989

    Google Scholar 

  80. Savill JS, Dransfield I, Hogg C, Haslett C: Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343: 170, 1990

    Google Scholar 

  81. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs S, Kimchi A, Oren M: Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345, 1991

    Google Scholar 

  82. Yonish-Rouach E, Borde J, Gotteland M, Mishal Z, Viron A, May E: Induction of apoptosis by transiently transfected metabolically stable WT P53 in transformed cell lines. Cell Death Diff 1: 39–48, 1994

    Google Scholar 

  83. Rey I, Fath I, Parker F, Haun S, Schweighoffer F, Tocqué B: A role for Grb2 in apoptosis? Cell Death Diff 2: 105–112, 1995

    Google Scholar 

  84. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC: Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–126, 1992

    Google Scholar 

  85. Ellis HM, Horvitz HR: Genetic control of programmed cell death in the nematode C. elegans. Cell 44: 817–829, 1986

    Google Scholar 

  86. Hockenbery D, Zutter M, Hickey W, Nahm M, Korsmeyer SJ: Bcl-2 protein is an inner mitochondrial membrane protein that blocks topographically programmed cell death. Nature 348: 334, 1990

    Google Scholar 

  87. Hockenbery D, Nunez G, Milliman C, Schreiber S, Korsmeyer SJ: Bcl-2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc Natl Acad Sci USA 88: 6961, 1991

    Google Scholar 

  88. Peitsch MC, Polzar B, Tschopp J, Mannherz HG: About the involvement of deoxyribonuclease I in apoptosis. Cell Death Diff 1: 1–6, 1994

    Google Scholar 

  89. Eastman A: Deoxyribonuclease II in apoptosis and the significance of intracellular acidification. Cell Death Diff 1: 7–10, 1994

    Google Scholar 

  90. Hughes Jr FM, Cidlowski JA: Apoptotic DNA degradation: evidence for novel enzymes. Cell Death Diff 1: 11–18, 1994

    Google Scholar 

  91. Green H: Terminal differentiation of cultured human epidermal cells. Cell 11: 405, 1977

    Google Scholar 

  92. Folk JE, Finlayson S: The ε(γ-glutamyl)lysine crosslink and the catalytic role of transglutaminase. Adv Prot Chem 31: 1, 1977

    Google Scholar 

  93. Folk JE: Transglutaminases. Annu Rev Biochem 49: 517–531, 1980

    Google Scholar 

  94. Melino G, Annicchiarico-Petruzzelli M, Piredda L, Candi E, Gentile V, Davies PJA, Piacentini M: Tissue-Transglutaminase and apoptosis: sense and antisense transfection studies in human neuroblastoma cells. Mol Cell Biol 14(10): 6584–6596, 1994

    Google Scholar 

  95. Corasaniti MT, Tartaglia LR, Melino G, Nisticó G, Finazzi-Agró A: Nitric oxide mediates a Ca2+dependent death induced by N-methyl-D-aspartate in cultured human CHP100 neuroblastoma cells. Mol Neuropharmacol 3: 127–131, 1993

    Google Scholar 

  96. Corasaniti T, Melino G, Tartaglia RL, Finazzi-Agró A, Nisticó G: N-methyl-D-aspartate-induced excessive formation of nitric oxide in CHP100 neuroblastoma cells death of B-mel melanoma cells in co-culture. Neuropharmacology 33(9): 1071–1077, 1994

    Google Scholar 

  97. Piacentini M, Melino G: Role of tissue-transglutaminase in neuroblatoma cells undergoing apoptosis. Prog Clin Biol Res 385: 123–129, 1994

    Google Scholar 

  98. Goossens JF, Manechez D, Pommery N, Formstecher P, Henichart JP: VIP potentiates retinoic acid effector tissue transglutaminase activity in human neuroblastoma, the SK-N-SH cells. Neuropeptides 24: 99–103, 1993

    Google Scholar 

  99. Hanada M, Krajewski S, Tanaka S, Cazals-Hatem D, Spengler BA, Ross RA, Bielder L, Reed JC: Regulation of Bcl-2 oncoprotein levels with differentiation of human neurolastoma cells. Cancer Res 53: 4978–86, 1993

    Google Scholar 

  100. Tabin CJ: Retinoids, homeoboxes, and growth factors: toward molecular models for limb development. Cell 66: 199–217, 1991

    Google Scholar 

  101. Edwards SN, Buckmaster AE, Tolkovsky AM: The death programme in cultured sympathetic neurones can be suppressed at the posttranslational level by nerve growth factor, cyclic AMP, and depolarization. J Neurochem 57: 2140–2143, 1991

    Google Scholar 

  102. Piacentini M, Fesus L, Melino G: Multiple cell cycle access to the apoptotic death programme in human neuroblastoma cells. FEBS Lett 320: 150–154, 1993

    Google Scholar 

  103. McCaffery P, Drager UC: Hot spots of retinoic acid synthesis in the developing spinal cord. Proc Natl Acad Sci USA 91: 7194–7197, 1994

    Google Scholar 

  104. Ruiz y Altaba A, Jessell TM: Retinoic acid modifies the pattern of cell differentiation in the central nervous system of nurula stage Xenopus embryos. Development 112: 945–958, 1991

    Google Scholar 

  105. Wagner M, Thaller C, Jassel T, Eichele G: Polarizing activity and retinoid synthesis in the floor plate of the neuronal tube. Nature 356: 819–822, 1990

    Google Scholar 

  106. Sharpe CR: Retinoic acid can mimic endogenous signals involved in trasformation of the Xenopus nervous system. Neuron 7: 239–247, 1991

    Google Scholar 

  107. Morriss-Kay GM, Murphy P, Hill RE, Davidson DR: Effects of retinoic acid excess on expression of Hox-2.9 and Krox-20 and on morphological segmentation in the hind-brain of mouse embryos. EMBO J 10: 2985–2995, 1991

    Google Scholar 

  108. Manohar C, Salwen H, Furtado M, Cohn S: Retinoic acid induced expression of homeobox genes in human neuroblastoma cells. Prog Clin Biol Res 385: 229–235, 1994

    Google Scholar 

  109. Waring L, Sidel N: Differential susceptibilities of spinal cord neurons to retinoic acid-induced survivial and differentiation. Dev Biol 144: 429–435, 1991

    Google Scholar 

  110. Maden M, Ong DE, Chytil F: Retinoid-binding protein distribution in the developing mammalian nervous system. Development 109: 75–80, 1990

    Google Scholar 

  111. Maden M, Hunt P, Eriksson U, Kuroiwa A, Krumlauf R, Summerbell D: Retinoic acid-binding protein, rhombomeres and neural crest. Development 111: 35–44, 1991

    Google Scholar 

  112. Ruberte E, Dolle P, Krust A, Zelent A, Morriss-Kay G, Chambon P: Specific spatial and temporal distribution of retinoic acid receptor gamma transcript during mouse embryogenesis. Development 108: 213–222, 1990

    Google Scholar 

  113. Rowe A, Eager NSC, Brickell PM: A member of RXR nuclear receptor family is expressed in neural-crest-derived cells of the developing chick peripheral nervous system. Development 111: 771–778, 1991

    Google Scholar 

  114. Rodriguez-Tebar A, Rohrer H: Retinoic acid induces NGF-dependent survival response and high-affinity NGF receptor in immature chich symphathetic neurons. Development 112: 813–820, 1991

    Google Scholar 

  115. Scheibe RJ, Ginty DD, Wagner JA: Retinoic acid stimulates the differentiation of PC12 that are deficient in cAMP-dependent protein kinase. J Cell Biol 113: 1173–1181, 1991

    Google Scholar 

  116. Hunter K, Maden M, Summerbell D, Eriksson U, Holder N: Retinoic acid stimulates neurite outgrowth in the amphibian spinal cord. Neurobiology 88: 3666–3670, 1991

    Google Scholar 

  117. Kohl NE, Gee CE, Alt FW: Activated expression of NMYC gene in human neuroblastomas and related tumours. Science 226: 1335–133, 1984

    Google Scholar 

  118. Lee W, Murphee AL, Benedict WF: Expression and amplification of the N-myc gene in primary retinoblastoma. Nature 309: 458–460, 1984

    Google Scholar 

  119. De Pinho R, Mitsock L, Hatton K, Ferrier P, Zimmerman K, Legory E, Tesfaye A, Collin R, Yancopoulos G, Nisen P, Kriz R, Alt F: MYC Family of cellular oncogenes. J Cell Biol 33: 257–266, 1987

    Google Scholar 

  120. Schwab M: The MYC-box oncogene. In: Reddy EP, Skalka AM, Curran T (eds) The Oncogene Handbook. Elsevier Science Publishers BV, Amsterdam, 1988, 381–391

    Google Scholar 

  121. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY, Hammond D: Association of multiple copies of the NMYC oncogene with rapid progression of neuroblastomas. N Engl J Med 313: 1111–1116, 1985

    Google Scholar 

  122. Ikegaki N, Bukovsky J, Kennett RH: Identification and characterization of the NMYC gene product in human neuroblastoma cells by monoclonal antibodies with defined specificities. Proc Natl Acad Sci USA 83: 5929–5933, 1986

    Google Scholar 

  123. Stanton LW, Schwab M, Bishop JM: Nucleotide sequence of the human NMYC gene. Proc Natl Acad Sci USA 83: 1772–1776, 1986

    Google Scholar 

  124. Cole MD: Myc meets its Max. Cell 65: 715–716, 1991

    Google Scholar 

  125. Wenzel A, Cziepluch C, Hamann U, Schurmann J, Schwab M: The N-Myc oncoprotein is associated in vivo with the phosphoprotein Max (p20/22) in human neuroblastoma cells. EMBO J 10: 3703–3712, 1991

    Google Scholar 

  126. Ayer DE, Kretzner L, Eiseman RN: Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72: 211–22, 1993

    Google Scholar 

  127. Thiele CJ, Reynolds CP, Israel MA: Decreased expression of NMYC precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 313: 404–406, 1985

    Google Scholar 

  128. Hammerling U, Bjelfman C, Pahlman S: Different regulation of NMYC and CMYC expression during phorbol ester-induced maturation of human SH-SY5Y neuroblastoma cells. Oncogene 2: 73–77, 1987

    Google Scholar 

  129. Raschellá G, Negroni A, Skorski T, Pucci S, Nieborowska-Skorska M, Romeo A, Calabretta B: Inhibition of proliferation by c-myb antisense RNA and oligodeoxynucleotides in transformed neuroectodermal cell lines. Cancer Res 52: 4221–4226, 1992

    Google Scholar 

  130. Piacentini M, Raschellá G, Calabretta B, Melino G: c-myb down regulation is associated with apoptosis in human neuroblastoma cells. Cell Death Diff 1: 85–92, 1994

    Google Scholar 

  131. Osborne BA: Intracellular regulators of death [editorial]. Cell Death Diff 1: i–ii, 1994

    Google Scholar 

  132. Huguet C, Enrietto P, Vandenbunder B, Abbadie C: C-Rel: a multifunctional transcription factor? Cell Death Diff 1: 71–76, 1994

    Google Scholar 

  133. Arends MJ, AH Wyllie: Apoptosis. Mechanism and role in pathology. Int Rev Exp Pathol 32: 223, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melino, G., Thiele, C.J., Knight, R.A. et al. Retinoids and the control of growth/death decisions in human neuroblastoma cell lines. J Neurooncol 31, 65–83 (1997). https://doi.org/10.1023/A:1005733430435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005733430435

Navigation