Skip to main content
Log in

Biogeochemistry of particulate organic matter transported by the Godavari River, India

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The Godavari River, the third largest river of India,has been sampled for Particulate Inorganic and OrganicCarbon (PIC, POC), Particulate Nitrogen (PN), andParticulate Amino Acids (PAA, including 2 hexosamines(HA)). During the dry season Particulate OrganicMatter (POM) in the upper reaches is relatively freshand autochthonous, in the lower reaches it is degradedand inorganic suspended matter content is higher here.In the wet season (wet monsoon) heavy rains cause abasin-wide flushing of humus from entire catchmentarea consequently POM in the river is mainly degradedand allochthonous. Annual transport of the GodavariRiver amounts to 2.81 × 10 6 ton POC, 0.29 × 10 6ton PN and 0.10 × 10 6 tonParticulate Amino Acid Nitrogen. These amounts rank theGodavari River to one of the most important organic carbontransporting rivers in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous (1989) MajorRiverBasins of India-An Overview.Government of India,Ministry of water resources, Central Water Commission, N. Delhi, 66 pp

  • Anonymous (1995) Hydrological Conditions and Water Balance of Godavari Basin (Water years 1991-92 and 1992-93).Water Management Directorate, CentralWater Commission, N. Delhi, 56 pp

  • Berner RA (1991) A model for atmospheric carbon dioxide over phanerozoic time. Am. J. Sci. 291: 339–376

    Google Scholar 

  • Berner RA (1992) Weathering, plants and the long term carbon cycle. Geochim. Cosmochim. Acta 56: 3225–3231

    Google Scholar 

  • Berner RA, Lasaga AC & Garrels RM (1983) The Carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide. Am. J. Sci. 283: 641–683

    Google Scholar 

  • Biksham G & Subramanian V (1980) Chemical and sediment mass transfer in the Godavari River Basin. J. Hydrol. 46: 331–342

    Google Scholar 

  • Biksham G & Subramanian V (1988) Sediment transport of the Godavari River Basin and its controlling factors. J. Hydrol. 101: 275–290

    Google Scholar 

  • Bordovskiy OK (1965) Sources of organic matter in marine basins. Mar. Geol. 3: 5–31

    Google Scholar 

  • Census of India (1981) Census Atlas. Government of India Publication, New Delhi

  • Cowie GL & Hedges JI (1984) Carbohydrate sources in coastalmarine environment. Geochim. Cosmochim. Acta 48: 2075–2087

    Google Scholar 

  • Degens ET (1982) Riverine carbon-an overview. Mitt. Geol. Palaeont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderbd. 52: 1–12

    Google Scholar 

  • Degens ET & Ittekkot V (1984) A new look at clay-organic interaction. Mitt. Geol. Palaeont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderbd. 56: 229–248

    Google Scholar 

  • Degens ET & Ittekkot V (1985) Particulate organic carbon-an overview.Mitt. Geol. Palaeont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderbd. 58: 7–27

    Google Scholar 

  • Degens ET & Mopper K (1976) Factors controlling the distribution and early diagenesis of organic material in marine sediments. In:Wiley JP & Chester R (Eds) Chemical Oceanography, vol. 6, 2nd ed (pp 59–113). Academic Press, San Diego, California

    Google Scholar 

  • Degens ET, Reuter JH & Shaw KNF (1964) Biochemical compounds in offshore California sediments and sea water. Geochim. Cosmochim. Acta 28: 45–66

    Google Scholar 

  • Degens ET, Kempe S and Richey JE (Eds) (1991) Biogeochemistry of Major World Rivers, SCOPE 42. John Wiley, Chichester, 356 pp

    Google Scholar 

  • Der Grosse BertelsmannWeltatlas (1961) C. Bertelsmann Verlag, Gütersloh, Germany, pp 54–56

  • Duce RA & Duursma EK (1977) Input of organic matter to the ocean. Mar. Chem. 5: 319–339

    Google Scholar 

  • Emerson S, Fischer K, Reimers CE & Heggie D (1985) Organic carbon dynamics in deep sea sediment. Deep Sea Res. 32: 1–21

    Google Scholar 

  • Ertel JR & Hedges JI (1983) Bulk chemical and spectroscopic properties of marine and terrestrial humic acids, melanoidins and catechol based synthetic polymers. In: Christman RF & Gjessing ET (Eds) Aquatic and Terrestrial Humic Material (pp 143–163). Ann Arbour Science, Michigan

    Google Scholar 

  • Finch CJ (1994) TOGA CD-ROM User's Guide. Physical Oceanography Distributed Active Archive Centre. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA, 126 pp

    Google Scholar 

  • Garrels RM & Mackenzie FT (1971) Evolution of Sedimentary Rocks. M.W. Norton, New York

    Google Scholar 

  • Goldberg ED (1978) Cycles of some elements through recently deposited sediments. In: Krumbein WE (Ed) Environmental Biogeochemistry and Geomicrobiology, vol. 1: The Aquatic Environment. Ann Arbour Science, Michigan

  • Haake B, Ittekkot V, Ramaswamy V, Nair RR & Honjo S (1992) Fluxes of amino acids and hexosamines to the deep Arabian Sea. Mar. Chem. 40: 291–314

    Google Scholar 

  • Handa N & Tominaga H (1969) A detailed analysis of carbohydrates in marine particulate matter. Mar. Biol. 2: 228–235

    Google Scholar 

  • Henrich SM, Farrington JW & Lee C (1984) Peru upwelling region sediments near 15OS.2. Dissolved free total hydrolysable amino acids. Limnol. Oceanogr. 29: 20–34

    Google Scholar 

  • Ittekkot V (1988) Global trends in the nature of organic matter in river suspensions. Nature 332: 436–438

    Google Scholar 

  • Ittekkot V & Arain R (1986) Nature of the particulate matter in the river Indus, Pakistan. Geochim. Cosmochim. Acta 50: 1643–1653

    Google Scholar 

  • Ittekkot V & Zhang S (1989) Pattern of particulate nitrogen transport in world rivers. Global Biogeochem. Cycles 3: 383–391

    Google Scholar 

  • Ittekkot V, Deuser WG & Degens ET (1984) Seasonality in the fluxes of sugars, amino acids and amino sugars to the deep oceans: Sargasso Sea. Deep Sea Res. 31: 1057–1069

    Google Scholar 

  • Ittekkot V, Safiullah S & Arain R (1986) Nature of organic matter in rivers with deep sea connections: The Ganges, Brahmaputra and Indus. Sci. Total Env. 58: 93–107

    Google Scholar 

  • Ittekkot V & Laane RWPM (1991) Fate of riverine particulate organic matter. In: Degens ET, Kempe S & Richey JE (Eds) Biogeochemistry of Major World Rivers (pp 233–243). SCOPE 42. John Wiley, Chichester

    Google Scholar 

  • Ittekkot V, Nair RR, Honjo S, Ramaswamy V, Bartsch M, Manganini S & Desai BN (1991) Enhanced particle fluxes in Bay of Bengal induced by injection of fresh water. Nature 351: 385–387

    Google Scholar 

  • Ittekkot V, Safiullah S, Mycke B & Seifert R (1985) Seasonal variability and geochemical significance of organic matter in the River Ganges, Bangladesh. Nature 317: 800–802

    Google Scholar 

  • Izdar E, Konuk T, Ittekkot V, Kempe S & Degens ET (1987) The relation between environmental events and particle flux in the Black Sea. In: Degens ET, Izdar E & Honjo S (Eds) Particle flux in the ocean (pp 1-18). Mitt. Geol. Palaeont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderbd. 62

  • JGOFS (1992) Global Change. Implementation Plan. JGOFS Report, no. 9. IGBP report, no. 23. IGBP, Stockholm, pp 8

    Google Scholar 

  • Jha PK (1986) Nature of Chemical and Sediment Load in the Yamuna River Basin. Ph.D. Thesis. Jawaharlal Nehru University, New Delhi, 207 pp

    Google Scholar 

  • Kandler O (1979) Zellwandstrukturen beiMethan-Bakterian. Naturwissenschaften 66: 95–105

    Google Scholar 

  • Lee C & Cronin C (1982) The vertical flux of particulate organic nitrogen in the sea: Decomposition of amino acids in the Peru upwelling area and equatorial Atlantic. J.Mar. Res. 40: 227–251

    Google Scholar 

  • Lee C & Cronin C (1984) Particulate amino acids in the sea: Effects of primary productivity and biological decomposition. J. Mar. Res. 42: 1075–1097

    Google Scholar 

  • Lehninger AL (1982) Principles of Biochemistry. Worth Publishers, New York, 1011 pp

    Google Scholar 

  • Liebezeit G & Bodungen BV (1987) Biogenic fluxes in the Bransfield Straight: Planktonic versus macroalgal sources. Mar. Ecol. Prog. Ser. 36: 23–32

    Google Scholar 

  • Mahanta C (1995) Distribution of Nutrients and Toxic Metals in the Brahamaputra River Basin. Ph.D. Thesis. Jawaharlal Nehru University, New Delhi. 155+19 pp

    Google Scholar 

  • Michaelis W & Ittekkot V (1982) Biogeochemistry of rivers: Field and analytical techniques. Mitt. Geol. Palaeont. Inst., Univ. Hamburg. Sonderbd. 52: 69–89

    Google Scholar 

  • Montani S, Maita Y & Fukase S (1982) Possible occurrence of diatom cell wall derived amino acids in Okhotsk Sea sediments. Geochemical Journal 16: 259–262

    Google Scholar 

  • Müller PJ (1977) C/N Ratios in Pacific deep sea sediments: Effect of inorganic ammonium and organic nitrogen compound sorbed by clays. Geochim. Cosmochim. Acta 41: 765–776

    Google Scholar 

  • Müller PJ, Suess E & Ungerer AC (1986) Amino acids and amino sugars of surface particulate and sediment material from waters of Scotia Sea. Deep Sea Res. 33: 819–838

    Google Scholar 

  • Paolini J & Ittekkot V (1990) Particulate organic matter in the Orinocco River. Naturwissenschaften 77: 80–81

    Google Scholar 

  • Parsons JW (1981) Chemistry and distribution of amino sugars in soils and soil organisms. In: Paul EA & Ladd JN (Eds) Soil Biochemistry, vol. 5 (pp 197–227). Marcel Dekker, New York

    Google Scholar 

  • Ramana YV, Rao VR & Reddy BSR (1989) Diurnal variation in salinity and currents in Vasishtha Godavari Estuary, east coast of India. Indian J. Mar. Sci. 18: 54–59

    Google Scholar 

  • Ramesh R, Purvaja GR & Subramanian V (1995) Carbon and phosphorus transport by the major Indian rivers. J. Biogeogr. 22: 409–415

    Google Scholar 

  • Redfield AC, Ketchum BH & Richards FA (1963) The influence of organisms on the composition of sea water. In: Hill MN (Ed) The Sea, vol. 2 (pp 26-77). Wiley, New York

    Google Scholar 

  • Reistad R (1975) Amino sugars and amino acids constituents of the cell walls of extremely Halophilic Cocci. Arch. Microbiol. 102: 71–73

    Google Scholar 

  • Richey JE, Brock JT, Naiman RR, Wissmar RC & Stallard RF (1980) Organic carbon: Oxidation and transport in Amazon River. Science 207: 1348–1351

    Google Scholar 

  • Sarmiento JL & Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356: 589–593

    Google Scholar 

  • Schlesinger WH (1984) Soil organic matter: A source of atmospheric CO2. In: Woodwell GM (Ed) The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing (pp 111-127). SCOPE, John Wiley

    Google Scholar 

  • Schlesinger WH & Melack JM (1981) Transport of organic carbon in the world rivers. Tellus 33: 172–187

    Google Scholar 

  • Seifert R, Emeis KC, Michaelis W & Degens ET (1990a) Amino acids and carbohydrates in sediments and interstitial waters from Site 681, Leg 112, Peru Continental Margin. In: Suess E, Huene R et al. (Eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol. 112 (pp 555–566)

  • Seifert R, Emeis KC, Spitzy A, Strahlendorff K, Michaelis W & Degens ET (1990b) Geochemistry of labile organic matter in sediments and interstitial water recovered from Site 651 and 653. ODP Leg 107 in the Tyrrehenian Sea. In: Kastes KA, Mascle J et al. (Eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol. 107 (pp 591–602)

  • Spitzy A & Ittekkot V (1991) Dissolved and particulate organic matter in Rivers. In:Mantoura RFC, Martin JM & Wollast R (Eds) Ocean Margin Processes in Global Change (pp 5–17). John Wiley, Chichester

    Google Scholar 

  • Steinberg SM, Venkatesan MI & Kaplan IR(1987) Organic geochemistry of sediments fromthe Continental Margins off Southern New England, USA. Part 1, amino acids, carbohydrates and lignin. Mar. Chem. 21: 249–265

    Google Scholar 

  • Stevenson FJ (1994) Humus Chemistry: Genesis, Composition, Reactions. 2nd ed. JohnWiley, New York. 496 pp

    Google Scholar 

  • Van Bennekom AJ & Salomons W(1981) Pathways of nutrients and organic matter from land to ocean through rivers. In: Burton JD et al. (Eds) River Inputs to Ocean Systems (pp 33–51). United Nations, New York

    Google Scholar 

  • Vitousek PM (1983) The effect of deforestation in air, soil and water. In: Bolin B & Cook RB (Eds) The Major Biogeochemical Cycles and Their Interactions (pp 223-245). John Wiley, New York

    Google Scholar 

  • Wakeham SG, Lee C, Farrington JW & Gagosian RB (1984) Biogeochemistry of particulate organic matter in the oceans: Results from sediment trap experiments. Deep Sea Res. 31: 509–520

    Google Scholar 

  • Walker JCG, Hays PB & Kasting JF (1981) A negative feedback mechanism for the long term stabilisation of Earth's surface temperature. J. Geophys. Res. 86: 9776–9782

    Google Scholar 

  • Walsh J, Premuzic ET & Whittledge TE (1981) Fate of nutrient enrichment on continental shelves as indicated by C/N content of bottom sediments. In: Nihoul JCJ (Ed) Ecohydrodynamics (pp 13–49). Elsevier, Amsterdam

    Google Scholar 

  • Williams PM (1971) The distribution of cycling of organic matter in the ocean. In: Faust SJ & Hunter JV (Eds) Organic Compounds in Aquatic Environments (pp 145–163). Marcel Dekker

  • Wolla MD, Lau PY, Morgen SL, Fox AL & Brown A (1984) Capillary gas chromatographymass spectrometry of carbohydrate components of Legionelle and other bacteria. J. Chromatogr. 288: 399–413

    Google Scholar 

  • Zhang S, Gan WB & Ittekkot V (1992) Organic matter in large turbid rivers: The Huanghe and its estuary. Mar. Chem. 38: 53–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GUPTA, L.P., SUBRAMANIAN, V. & ITTEKKOT, V. Biogeochemistry of particulate organic matter transported by the Godavari River, India. Biogeochemistry 38, 103–128 (1997). https://doi.org/10.1023/A:1005732519216

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005732519216

Navigation