, Volume 36, Issue 3, pp 239–260 | Cite as

Carbon storage in forest soil of Finland. 1. Effect of thermoclimate



A total of 30 coniferous forest sites representing two productivityclasses, forest types, were investigated on a temperature gradient(effective temperature sum using +5°C threshold 800–1300degree-days and annual mean temperature –0.6–+3.9°C) inFinland for studying the effect of thermoclimate on the soil C storage.Other soil forming factors were standardized within the forest types sothat the variation in the soil C density could be related to temperature.According to the applied regression model, the C density of the 0–1 mmineral soil layer increased 0.266 kg m–2 for every 100 degree-dayincrease in the temperature sum, and the layer contained 57% and28% more C under the warmest conditions of the gradient comparedto the coolest in the less and more productive forest type, respectively.Accordingly, this soil layer was estimated to contain 23 more C ina new equilibrium with a 4°C higher annual meantemperature in Finland. The C density of the organic layer was notassociated with temperature. Both soil layers contained more C at thesites of the more productive forest type, and the forest type explained36% and 70% of the variation in the C density of the organic and 0–1m layers, respectively. Within the forest types, the temperature sumaccounted for 33–41% of the variation in the 0–1 m layer. Theseresults suggest that site productivity is a cause for the large variation inthe soil C density within the boreal zone, and relating the soil C densityto site productivity and temperature would help to estimate the soil Creserves more accurately in the boreal zone.

boreal forests carbon balance climate change climatic warming podzols soil carbon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson JM (1992) Responses of soils to climate change. Adv. Ecol. Res. 22: 163–210Google Scholar
  2. Anonymous (1988) SAS/STAT User's guide, Release 6.03 Edition. SAS Institute Inc. Cary, NeGoogle Scholar
  3. Anonymous (1991) Climatological statistics in Finland 1961-1990. Supplement to the meteorological yearbook of Finland 90(1)Google Scholar
  4. Anonymous (1994) Yearbook of Forest Statistics. The Finnish Forest Research Institute, HelsinkiGoogle Scholar
  5. Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Calvo De Anta R, Couteaux M, Escudero A, Callardo A, Kratz W, Madeira M, Mälkönen E, McClaughery C, Meentemeyer V, Muñoz F, Piussi P, Remecle J & Virzo De Santo A (1993) Litter mass loss rates in pine forests of Europe and Eastern United States: Some relationships with climate and litter quality. Biogeochemistry 20: 127–159Google Scholar
  6. Birkeland (1984) Soils and Geomorphology. Oxford University Press, New York, OxfordGoogle Scholar
  7. Bonan GB & Van Cleve K (1992) Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests. Can. J. For. Res. 22: 629–639Google Scholar
  8. Boström S, Backman R & Hupa M (1990) Energiantuotannon ja-kulutuksen kasvihuonekaasujen päästöt Suomessa. Kauppa-ja teollisuusministeriö, Helsinki. Sarja D:186Google Scholar
  9. Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K & Schimel DS (1989) Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Sci. Soc. Am. J. 53: 800–805Google Scholar
  10. Cajander AK (1925) The theory of forest types. Acta For. Fenn. 29(3): 1–108Google Scholar
  11. Donner JJ (1969) A profile across Fennoscandia of LateWeichselian and Flandrian shore-lines. Societas Scientiarium Fennica, Commentationes Physico-Mathematicae 36(1): 1–23Google Scholar
  12. Elonen P (1971) Particle-size analysis of soil. Acta Agraria Fennica 112: 1–122Google Scholar
  13. Emanuel WR, Shugart HH & Stevenson MP (1985) Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Clim. Change 7: 29–43Google Scholar
  14. Eronen M & Haila H (1981) The highest shore-line of the Baltic in Finland. Striae 14: 157–158Google Scholar
  15. Eronen M (1990) Muuttuva ilmasto, Summary: The changing climate. Terra 102(4): 220–238Google Scholar
  16. Flanagan PW & Van Cleve K (1983) Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can. J. For. Res. 13: 795–817Google Scholar
  17. Gifford RM (1992) Implications of the globally increasing atmospheric CO2 concentration and temperature for the Australian terrestrial carbon budget: Integration using a simple model. Aust. J. Bot. 40: 527–543Google Scholar
  18. Glückert G (1989) Shore-level displacement of the Baltic during the Ancylus Lake and the Litorina Sea stages (9000 years) in the South and Central Ostrobothnia. Publications of the Department of Quartenary Geology, University of Turku 64: 1–14Google Scholar
  19. Gustavsen HG (1980) Talosmetsien kasvupaikkaluokittelu valtapituuden avulla (in Finnish). Summary: Site index curves for conifer stands in Finland. Folia Forestalia 454: 1–31Google Scholar
  20. Ilvessalo Y & Ilvessalo M (1975) Suomen metsätyypit metsiköiden luontaisen kehitys-ja puuntuottokyvyn valossa, Summary: The forest types of Finland in the light of natural development and yield capacity of forest stands. Acta For. Fenn. 144: 1–101Google Scholar
  21. Jenkinson DS & Rayner JH (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 123: 298–305Google Scholar
  22. Johnson DW(1995) Role of carbon in the cycling of other nutrients in forested ecosystems. In: McFee WW & Kelly JM (Eds) Carbon Forms and Functions in Forest Soils (pp 299–328). Soil Science Society of America Inc., MadisonGoogle Scholar
  23. Jongman RH, ter Braak CJF & van Tongeren OFR (1987) Data Analysis in Community and Landscape Ecology. Pudoc, WageningenGoogle Scholar
  24. Kellomäki S & Kolström M(1992) Simulation of tree species composition and organic matter accumulation in Finnish boreal forests under changing climatic conditions. Vegetatio 102: 47–68Google Scholar
  25. Kira T & Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jap. J. Ecol. 17: 70–87.Google Scholar
  26. Kirschbaum MUF (1993) A modelling study of the effects of changes in atmospheric CO2 concentration, temperature and atmospheric nitrogen input on soil organic carbon storage. Tellus 45B: 321–334Google Scholar
  27. Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic carbon storage. Soil Biol. Biochem. in press.Google Scholar
  28. Kalela A (1961) Waldvegetationszonen Finnlands und ihre Klimatischen Paralleltypen. Archivum Sociatatis Zoologicae Botanicae Fennicae Vanamo 16 Suppl.: 65–83Google Scholar
  29. Koivisto P (1970) Regionality of forest growth in Finland. Commun. Inst. For. Fenn. 71(2): 1–76Google Scholar
  30. Kramer B & Becker B (1993) German oak and pine 14C calibration, 7200-9439 BC. Radiocarbon 35(1): 125–135Google Scholar
  31. Liski J & Westman CJ (1995) Density of organic carbon in soil at coniferous forest sites in southern Finland. Biogeochemistry 29(3): 183–197Google Scholar
  32. Liski J (1995) Variation in soil organic carbon and thicknesses of soil horizons within a boreal forest stand-the effect of trees and implications for sampling. Silva Fennica 29(4): 255–266Google Scholar
  33. Liski J & Westman CJ (1997) Carbon storage in forest soil of Finland 2. Size and regional patterns. Biogeochemistry 36: 261–274Google Scholar
  34. Meentemeyer V (1978)Macro climate and lignin control of litter decomposition rates. Ecology 59(3): 465–472Google Scholar
  35. Melillo JM, Naiman RJ, Aber JD & Eshleman KN (1983) The influence of substrate quality and stream size on wood decomposition dynamics. Oecologia 58: 281–285Google Scholar
  36. Mielikäinen K (1985) Koivusekoituksen vaikutus kuusikon rakenteeseen ja kehitykseen, Summary: Effect of an admixture of birch on the structure and development of Norway spruce stands. Commun. Inst. For. Fenn. 133: 1–79Google Scholar
  37. Mikola P (1960) Comparative experiment on decomposition rates of forest litter in southern and northern Finland. Oikos 11: 161–166Google Scholar
  38. Mitchell JFB, Manabe S, Meleshko V & Tokioka T (1990) Equilibrium climate change-and its implications for the future. In: Houghton JT, Jenkins GJ & Ephraums JJ (Eds) Climate Change, The IPCC Scientific Assessment (pp 131–172). University Press, CambridgeGoogle Scholar
  39. Moore TR (1984) Litter decomposition in a sub-arctic, spruce-lichen woodland in eastern Canada. Ecology 65: 299–308Google Scholar
  40. Parton WJ, Schimel DS, Cole CV & Ojima DS (1987) Analysis of factors controlling organic matter levels in great plains grassland. Soil Sci. Soc. Am. J. 51: 1173–1179Google Scholar
  41. Pastor J & Post WM (1988) Response of northern forests to CO2-induced climate change. Nature 334: 55–58Google Scholar
  42. Post WM, Emanuel WR, Zinke PJ & Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298: 156–159Google Scholar
  43. Rastetter EB, Ryan MG, Shaver GR, Melillo JM, Nadelhoffer KJ, Hobbie JE & Aber JD (1991) A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposition. Tree Physiol 9: 101–126Google Scholar
  44. SaarnistoM (1981) Holocene emergence history and stratigraphy in the area north of the Gulf of Bothnia. Annales Academiae Scientiarum Fennicae A III. 130: 1–42Google Scholar
  45. Schlesinger WH (1977) Carbon balance in terrestrial detritus. Ann. Rev. Ecol. Syst. 8: 51–81Google Scholar
  46. Smith TM, Shugart HH, Bonan GB & Smith JB (1992) Modelling potential response of vegetation to global climate change. Adv. Ecol. Res. 22: 93–116Google Scholar
  47. Starr MR (1991) Soil formation and fertility along a 5000 year chronosequence. In: Pulkkinen E (Ed) Environmental Geochemistry in Northern Finland (pp 99–104). Geological Survey of Finland, Special Paper 9, HelsinkiGoogle Scholar
  48. Tamm CO & Östlund HG (1960) Radiocarbon dating on soil humus. Nature 185: 706–707Google Scholar
  49. Tamm CO & Holmen H (1967) Some remarks on soil organic matter Turn-over in Swedish podzol profiles. Meddelelser fra det Norske skogforsöksvesen 23(hefte 85): 69–88Google Scholar
  50. Ter Braak CJF (1988) CANOCO-a FORTRAN program for canonical community ordination by partial, detrended, canonical correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Technical Report LWA-88-02, Groep Landbouwwiskunde, WageningenGoogle Scholar
  51. Townsend AR, Vitousek PM & Holland EA(1992) Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures. Climatic change 22: 293–303Google Scholar
  52. Van Cleve K & Powers RF (1995) Soil carbon, soil formation, and ecosystem development. In: McFee WW & Kelly JM (Eds) Carbon Forms and Functions in Forest Soils (pp 155–200). Soil Science Society of America Inc., MadisonGoogle Scholar
  53. Van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39(2): 97–114Google Scholar
  54. Viro PJ 1947 Metsämaan raekoostumus ja viljavuus varsinkin maan kivisyyttä silmällä pitäen, Summary: Themechanical composition and fertility of forest soil taking into consideration especially the stoniness of the soil. Commun. Inst. For. Fenn. 35(2): 1–115Google Scholar
  55. Viro PJ 1951 Nutrient status and fertility of forest soil, I. Pine stands. Commun. Inst. For. Fenn. 39(4): 1–54Google Scholar
  56. Watson RT, Rodhe H, Oeschger H & Siegenthaler U (1990) Graanhouse gases and aerosols. In: Houghton JT, Jenkins GJ & Ephraums JJ (Eds) Climate Change, The IPCC Scientific Assessment (pp 1–40). University Press, CambridgeGoogle Scholar
  57. Westman CJ (1990) Metsämaan fysikaaliset ja fysikaalis-kemialliset ominaisuudet CT-OMaT kasvupaikkasarjassa, Summary: Soil physical and physico-chemical properties of Finnish upland forest sites. Silva Fennica 24(1): 141–158Google Scholar
  58. Westman CJ (1995) A simple device for sampling of volumetric forest soil cores. Silva Fennica 29(3): 247–251Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

    • 1
    • 1
  1. 1.Department of Forest EcologyUniversity of HelsinkiFinland

Personalised recommendations