Skip to main content
Log in

Clinical methods to determine coronary flow and myocardial perfusion

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

In this overview, currently available clinical methods to measure flow in the coronary circulation will be discussed. Methods only applicable in the experimental laboratory or in the anaesthetized patient during cardiac surgery, will not be described. We distinguish between methods that measure global blood flow, and methods that determine regional flow, either at the level of the coronary arteries or at the level of the myocardium. Since it is difficult to measure coronary flow in absolute values, ‘flow reserve’ is often used as an alternative. Flow reserve is calculated by dividing maximal flow, usually pharmacologically induced, by basal flow. Consequently, assessment of flow reserve requires only measurements of relative changes of coronary flow. The applicability and relative merits and limitations of the techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ganz W, Tamura K, Marcus H, Donoso R, Yoshida S, Swan HJC. Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 1971; 44: 181-95.

    Article  CAS  PubMed  Google Scholar 

  2. Mathey DG, Chatterjee K, Tyberg JV, Lekven J, Brundage B, Parmley WW. Coronary sinus reflux. A source of error in the measurement of thermodilution coronary sinus flow. Circulation 1978; 57: 778-86.

    Article  CAS  PubMed  Google Scholar 

  3. Weisse AB, Regan TJ. A comparison of thermodilution coronary sinus blood flows and krypton myocardial blood flows in the intact dog. Cardiovasc Res 1974; 8: 526-33.

    Article  CAS  PubMed  Google Scholar 

  4. Pepine CJ, Metha J, Webster WW, Nichols WW. In vivo validation of a thermodilution method to determine regional left ventricular blood flow in patients with coronary artery disease. Circulation 1978; 58: 795-802.

    Article  CAS  PubMed  Google Scholar 

  5. Rossen JD, Oskarsson H, Stenberg RG, Braun P, Talmen CL, Winniford DD. Simultaneous measurement of coronary flow reserve by left anterior descending coronary artery Doppler and great cardiac vein thermodilution methods. J Am Coll Cardiol 1992; 20: 402-7.

    Article  CAS  PubMed  Google Scholar 

  6. Bagger JP. Coronary sinus blood flow determination by thermodilution technique: Influence of catheter position and respiration. Cardiovasc Res 1984; 19: 27-31.

    Article  Google Scholar 

  7. Kety SS, Schmidt CF. The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 1945; 143: 53-66.

    CAS  Google Scholar 

  8. Kety SS. The theory and application of the exchange of inert gas at the lung and tissues. Pharmacol Rev 1951; 2: 1-41.

    Google Scholar 

  9. Eckenhoff JE, Hafkenschiel JH, Harmel MH, Goodale WT, Lubin M, Bing RJ, Kety SS. Measurement of coronary blood flow by the nitrous oxide method. Am J Physiol 1948; 152: 356-64.

    CAS  PubMed  Google Scholar 

  10. Cannon PJ, Dell RB, Dwyer EM. Regional myocardial perfusion rates in patients with coronary artery disease. J Clin Invest 1972; 51: 978-94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cannon PJ, Sciacca RR, Fowler DL, Weiss MB, Schmidt DH, Casarelle WJ. Measurement of regional myocardial blood flow in man: description and critique of the method using Xenon-133 and a scintilation camera. Am J Cardiol 1975; 1975; 36: 783-92.

    Article  CAS  PubMed  Google Scholar 

  12. Lichtlen PR, Engel HJ, Hundeshagen H. Assessment of regional coronary blood flow by the precordial zenon residue detection technique. In: Tillmans H, Kübler W, Zebe H, (eds). Microcirculation of the heart. Berlin: Springer Verlag, 1982: 180-93.

    Google Scholar 

  13. Klocke FJ, Bunell IL, Greene DG, Wittenberg SM, Visco JP. Average coronary blood flow per unit weight of left ventricle in patients with and without coronary artery disease. Circulation 1974; 50: 547-59.

    Article  CAS  PubMed  Google Scholar 

  14. Schmidt DH, Blau FM, Hendrix LJ, Kamath ML, Ray G. Myocardial perfusion after aortacoronary bypass surgery: measurements at rest and after administration of isoproterenol. Circulation 1985; 71: 767-78.

    Article  CAS  PubMed  Google Scholar 

  15. Morgan SM, Fisher JD, Horwitz LD. Validation of regional myocardial flow measurements with scintillation camera detection of Xenon-133. Invest Radiol 1978; 13: 132-7.

    Article  CAS  PubMed  Google Scholar 

  16. Doppler C. Ueber das farbige Licht der Dopplersterne und einiger anderer Gestirne des Himmels. Abhandl Koenigl Boehmische Gesellschaft der Wissenschaften 1942; 2: 467-82.

    Google Scholar 

  17. Hartley CJ, Cole JS. An ultrasonic pulsed Doppler system for measuring blood flow in small vessels. J Appl Physiol 1974; 37: 626-9.

    CAS  PubMed  Google Scholar 

  18. Cole SC, Hartley CJ. The pulsed Doppler coronary artery catheter preliminary report of a new technique for measuring rapid changes in coronary artery flow velocity in man. Circulation 1977; 56: 18-25.

    Article  CAS  PubMed  Google Scholar 

  19. Wilson RF, Laughlin DE, Ackel PH, Chilian WM, Holida CJ. Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 1985; 72: 82-92.

    Article  CAS  PubMed  Google Scholar 

  20. Sibley DH, Millar HD, Hartley CJ, Whithlow PLW. Subselective measurements of coronary blood flow velocity using a steerable Doppler catheter. J Am Coll Cardiol 1986; 8: 1332-40.

    Article  CAS  PubMed  Google Scholar 

  21. Johnson EL, Yock PG, Hargrave VK, Srebro JP, Manubens SM Seitz W, Ports TA. Assessment of severity of coronary stenoses using a Doppler catheter. Validation of a method based on the continuity equation. Circulation 1989; 80: 625-35.

    Article  CAS  PubMed  Google Scholar 

  22. Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M. Validation of a Doppler guide wire for intravascular measurements of coronary artery flow velocity. Circulation 1992; 85: 1899-1911.

    Article  CAS  PubMed  Google Scholar 

  23. Labovitz AJ, Anthonis DA, Cravens TL, Kern MJ. Validation of volumetric flow measurements by means of a Dopplertipped coronary angioplasty guide wire. Am Heart J 1993; 126: 1456-61.

    Article  CAS  PubMed  Google Scholar 

  24. Harrison DG, White CW, Hiratzka LF, Doty DB, Barnes DH, Eastham CL, Marcus ML. The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses. Circulation 1984; 69: 1111-9.

    Article  CAS  PubMed  Google Scholar 

  25. Serruys PW, Juliere Y, Zijlstra F, Beatt KJ, De Feyter PJ, Suryapranata H, Van den Brand M, Roelandt J. Coronary blood flow velocity during percutaneous transluminal coronary angioplasty as a guide for assessment of the functional result. Am J Cardiol 1988; 61: 253-9.

    Article  CAS  PubMed  Google Scholar 

  26. Kern MJ, Donohue TJ, Bach RG, Aguirre FV, Caracciolo EA, Ofili EO. Quantitating coronary collateral flow velocity in patients during coronary angioplasty using a Doppler guidewire. Am J Cardiol 1993; 71: 34D-40D.

    Article  CAS  PubMed  Google Scholar 

  27. Segal J. Application of coronary flow velocity during angioplasty and other coronary interventional procedures. Am J Cardiol 1993; 71: 17D-25D.

    Article  CAS  PubMed  Google Scholar 

  28. Kern MJ, Aguirre FV, Donohue TJ, Bach RG, Caracciolo EA, Flynn MS, Wolford T, Moore JA. Continuous coronary flow velocity monitoring during coronary interventions: Velocity trend patterns associated with adverse events. Am Heart J 1994; 128: 426-34.

    Article  CAS  PubMed  Google Scholar 

  29. Kern MJ, Donohue TJ, Aguirre FV, Bach RG, Caracciolo EA, Wolford T, Mechem CJ, Flynn MS, Chaitman B. Clinical outcome of deferring angioplasty in patients with normal translesional pressure-flow velocity measurements. J Am Coll Cardiol 1995; 25: 178-87.

    Article  CAS  PubMed  Google Scholar 

  30. Di Mario C, Krams R, De Feyter PJ, Serruys PW. New invasive techniques of assessment of the physiological significance of coronary stenoses in humans. Eur Heart J 1995; 16: 104-14.

    Article  PubMed  Google Scholar 

  31. Tadaoka S, Kagiyama M, Hiramatsu O, Ogasawara Y, Tsujioka K, Wada Y, Sawayama T, Kajiya F. Accuracy of 20-mHz Doppler catheter coronary artery velocimetry for measurement of coronary blood flow velocity. Cath Cardiovasc Diagn 1990; 19: 205-13.

    Article  CAS  Google Scholar 

  32. Ofili E, Kern MJ, Tatineni S, Delifonul U, Aguirre F, Serota H, Labovitz AJ. Detection of coronary collateral flow by a Doppler-tipped guide wire during coronary angioplasty. Am Heart J 1991; 122: 221-5.

    Article  CAS  PubMed  Google Scholar 

  33. Young DF, Cholvin NR, Roth AC. Pressure drops across artificially induced stenoses in the femoral arteries in dogs. Circ Res 1975; 36: 735-43.

    Article  CAS  PubMed  Google Scholar 

  34. Gould KL. Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during vasodilation. Circ Res 1978; 43: 242-53.

    Article  CAS  PubMed  Google Scholar 

  35. Kirkeeide RL, Gould LK, Parsel L. Assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated functional measure of stenosis severity reflecting all its geometric dimensions. J Am Coll Cardiol 1986; 7: 103-13.

    Article  CAS  PubMed  Google Scholar 

  36. Gould KL, Kelley KO, Bolson EL. Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis. Circulation 1982; 5: 930-7.

    Article  Google Scholar 

  37. Gould KL, Goldstein RA, Mullani NA, Kirkeeide RL, Wong W-H, Tewson TJ, Berridge MS, Bolomey LA, Hartz RK, Smalling RW, Fuentes F, Nishikawa A. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. VIII. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced Rubidium-82. J Am Coll Cardiol 1986; 7: 775-89.

    Article  CAS  PubMed  Google Scholar 

  38. Rutishauser W, Simon H, Stucky JP, Schad N, Noseda G, Wellauer J. Evaluation of Roentgen cinedensitometry for flow measurements in models and in the intact circulation. Circulation 1967; 36: 951-63.

    Article  CAS  PubMed  Google Scholar 

  39. Rutishauser W, Bussmann WD, Noseda G, Meier W, Wellauer J. Blood flow measurements through single coronary arteries by roentgen densitometry. Part I. A comparison of flow measured by a radiologic technique applicable in the intact organism and electromagnetic flowmeter. Am J Roentgenol 1970; 109: 12-20.

    Article  CAS  Google Scholar 

  40. Smith HC, Sturm RE, Wood E. Videodensitometric system for measurement of vessel blood flow, particularly in the coronary arteries, in man. Am J Cardiol 1973; 32: 144-50.

    Article  CAS  PubMed  Google Scholar 

  41. Spiller P, Schiel FK, Politz B, Block M, Fermor U, Hackbarth W, Jehle J, Korfer R, Pannek H. Measurement of systolic and diastolic flow rates in the coronary artery system by X-ray densitometry. Circulation 1983; 2: 337-47.

    Article  Google Scholar 

  42. Rutishauser W, Noseda G, Bussmann WD, Preter B. Blood flow measurement through single coronary arteries by roentgen densitometry. Part II. Right coronary artery flow in conscious man. Am J Roentgenol 1970; 109: 21-4.

    Article  CAS  Google Scholar 

  43. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Am J Cardiol 1974; 33: 87-94.

    Article  CAS  PubMed  Google Scholar 

  44. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Col Cardiol 1990; 15: 459-74.

    Article  CAS  Google Scholar 

  45. Pijls NHJ, Van Son JAM, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after transluminal coronary angioplasty. Circulation 1993; 86: 1354-67.

    Article  Google Scholar 

  46. De Bruyne B, Bartunek J, Sys SU, Hendrickx GR. Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 1995; 92: 39-46.

    Article  CAS  PubMed  Google Scholar 

  47. Pijls NHJ, De Bruyne B, Peels K, Van der Voort PH, Bonnier HJRM, Bartunek J, Koolen JJ. Measurement of fractional flow reserve to assess the functional severity of coronary artery stenoses. N Engl J Med 1996; 334: 1703-8.

    Article  CAS  PubMed  Google Scholar 

  48. DeMaria AN, Bommer WJ, Riggs K, Dajee A, Keown M, Kwan OL, Mason DT. Echocardiographic visualization of myocardial perfusion by left heart and intracoronary injections of contrast agents. Circulation 1980; 62(suppl): III-143.

    Google Scholar 

  49. Kaul S, Kelly P, Oliner JD, Glasheen WP, Keller MW, Watson DD. Assessment of regional myocardial blood flow with myocardial contrast two-dimensional echocardiography. J Am Coll Cardiol 1989; 13: 468-82.

    Article  CAS  PubMed  Google Scholar 

  50. Keller MW, Segal SS, Kaul S, Duling B. The behavior of sonicated albumin microbubbles within the microcirculation: a basis for their use during myocardial contrast echocardiography. Circ Res 1989; 65: 458-67.

    Article  CAS  PubMed  Google Scholar 

  51. Edwards N, Jayaweera AR, Glasheen WP, Brocolli A, Spotnitz WD, Kaul S. Myocardial contrast two-dimensional echocardiography can be used to measure myocardial red blood cell transit in-vivo. Circulation 1990; 82(suppl III): III-96.

    Google Scholar 

  52. Feinstein SB, Ten Cate FJ, Zwehl W, Ong K, Maurer G, Tei C, Shah PM, Meerbaum S. Corday E. Two-dimensional contrast echocardiography. I. In vitro development and quantitative analysis of echo contrast agents. J Am Coll Cardiol 1984; 3: 14-20.

    Article  CAS  PubMed  Google Scholar 

  53. Keller MW, Glasheen W, Smucker ML, Burwell LR, Watson DD, Kaul S. Myocardial contrast echocardiography in humans. II. Assessment of coronary blood flow reserve. J Am Coll Cardiol 1988; 12: 925-34.

    Article  CAS  PubMed  Google Scholar 

  54. Reisner SA, Ong LS, Lichtenberg GS, Amico AF, Shapiro JR, Allen MN, Meltzer RS. Myocardial perfusion imaging by contrast echocardiography with use of intracoronary albumin in humans. J Am Coll Cardiol 1989; 14: 660-5.

    Article  CAS  PubMed  Google Scholar 

  55. Keller MW, Glasheen W, Teja K, Gear A, Kaul S. Myocardial contrast echocardiography without significant hemodynamic effects or reactive hyperemia: A major advantage in the imaging of regional myocardial perfusion. J Am Coll Cardiol 1988; 12: 1039-47.

    Article  CAS  PubMed  Google Scholar 

  56. Kaul S, Glasheen W, Ruddy TD, Pandian NG, Weyman AE, Okada RD. The importance of defining left ventricular area at risk in vivo during acute myocardial infarction: an experimental evaluation with myocardial contrast two-dimensional echocardiography. Circulation 1987; 75: 1249-60.

    Article  CAS  PubMed  Google Scholar 

  57. Villanueva FS, Glasheen WP, Sklemar J, Kaul S. Assessment of risk area during coronary occlusion and infarct size after reperfusion with myocardial contrast echocardiography using left and right atrial injection of contrast. Circulation 1993; 88: 596-604.

    Article  CAS  PubMed  Google Scholar 

  58. Kemper AJ, Force T, Perkins L, Gilfoil M, Parisi AF. In vivo prediction of the transmural extent of experimental acute myocardial infarction using contrast echocardiography. J Am Coll Cardiol 1986; 8: 143-9.

    Article  CAS  PubMed  Google Scholar 

  59. Kaul S, Pandian NG, Guerrero JL, Gillam LD, Okada RD, Weyman AE. Effects of selectively altering collateral driving pressure on regional perfusion and function on occluded coronary bed in the dog. Circ Res 1987; 61: 77-85.

    Article  CAS  PubMed  Google Scholar 

  60. Tei C, Sakamaki T, Shah PM, Meerbaum S, Shimoura K, Kondo S, Corday E. Myocardial contrast echocardiography: A reproducible technique of myocardial opacification for identifying regional perfusion deficits. Circulation 1983; 67: 585-93.

    Article  CAS  PubMed  Google Scholar 

  61. Armstrong WF, West SR, Mueller TM, Dillon JC, Feigenbaum H. Assessment of location and size of myocardial infarction with contrast-enhanced echocardiography. J Am Coll Cardiol 1983; 2: 63-9.

    Article  CAS  PubMed  Google Scholar 

  62. Rovai D, Ghelardini G, Trivella MG, Bjorklund G, Nevola E, Taddei L, Distante A, L'Abbate A. Intracoronary air-filled albumin microspheres for myocardial blood flow measurement. J Am Coll Cardiol 1993; 22: 2014-21.

    Article  CAS  PubMed  Google Scholar 

  63. Ten Cate FJ, Silverman PR, Sassen LMA, Verdouw PD. Can myocardial contrast echo determine coronary flow reserve? Cardiovasc Res 1992; 26: 32-9.

    Article  CAS  PubMed  Google Scholar 

  64. Cheirif J, Zoghbi WA, Raizner AE, Minor ST, Winters WL, Klein MS, De Bauche TL, Lewis JM, Roberts R, Quinones MA. Assessment of myocardial perfusion in humans by contrast echocardiography. I. Evaluation of regional coronary reserve by peak contrast intensity. J Am Coll Cardiol 1988; 11: 735-43.

    Article  CAS  PubMed  Google Scholar 

  65. Porter TS, D'Sa A, Turner C, Jones LA, Minisi AJ, Mohanty PK, Vetrovec GW, Nixon JV. Myocardial contrast echocardiography for the assessment of coronary blood flow reserve: validation in humans. J Am Coll Cardiol 1993; 21: 349-55.

    Article  CAS  PubMed  Google Scholar 

  66. Grill HP, Brinker JA, Taube JC, Walford GD, Midei MG, Flaherty JT, Weiss JL. Contrast echocardiographic mapping of collateralized myocardium in humans before and after coronary angioplasty. J Am Coll Cardiol 1990; 16: 1594-1600.

    Article  CAS  PubMed  Google Scholar 

  67. Sabia PJ, Powers ER, Ragosta M, Sarembock IJ, Burwell LR, Kaul LR. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med 1992; 327: 1825-31.

    Article  CAS  PubMed  Google Scholar 

  68. Sabia PJ, Powers ER, Jayaweera AR, Ragosta M, Kaul S. Functional significance of collateral blood flow in patients with recent acute myocardial infarction. A study using myocardial contrast echocardiography. Circulation 1992; 85: 2080-9.

    Article  CAS  PubMed  Google Scholar 

  69. Lim Y-J, Nanto S, Masuyama T, Kodama K, Kohoma A, Kitabatake A, Kamada T. Coronary collateral assessed with myocardial contrast echocardiography in healed myocardial infarction. Am J Cardiol 1990; 66: 556-61.

    Article  CAS  PubMed  Google Scholar 

  70. Lang RM, Feinstein SB, Feldman T, Neumann A, Chua KG, Borow KM. Contrast echocardiography for evaluation of myocardial perfusion: Effects of coronary angioplasty. J Am Coll Cardiol 1986; 8: 232-5.

    Article  CAS  PubMed  Google Scholar 

  71. Cheirif J, Zoghbi WA, Bolli R, O'Neill PG, Hoyt BD, Quinones MA. Assessment of regional myocardial perfusion by contrast echocardiography. II. Detection of changes in transmural and subendocardial perfusion during dipyridamole-induced hyperemia in a model of critical coronary stenosis. J Am Coll Cardiol 1989; 14: 1555-65.

    Article  CAS  PubMed  Google Scholar 

  72. Zwehl W, Areeda J, Schwartz G, Feinstein S, Ong K, Meerbaum S. Physical factors influencing quantitation of two-dimensional contrast echo amplitudes. J Am Coll Cardiol 1984; 4: 157-64.

    Article  CAS  PubMed  Google Scholar 

  73. Ong K, Maurer G, Feinstein S, Zwehl W, Meerbaum S, Corday E. Computer methods for myocardial contrast two-dimensional echocardiography. J Am Coll Cardiol 1984; 3: 1212-8.

    Article  CAS  PubMed  Google Scholar 

  74. Shapiro JR, Reisner SA, Lichtenberg GS, Meltzer RS. Intravenous contrast echocardiography with use of sonicated albumin in humans: systolic disappearance of left ventricular contrast after transpulmonary transmission. J Am Coll Cardiol 1990; 7: 1603-7.

    Article  Google Scholar 

  75. Nanto S, Masuyama T, Lim Y-J, Hori M, Kodama K, Kamada T. Demonstration of functional border zone with myocardial contrast echocardiography in human hearts. Simultaneous analysis of myocardial perfusion and wall motion abnormalities. Circulation 1993; 88: 447-53.

    Article  CAS  PubMed  Google Scholar 

  76. Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Fujii K, Masuyama T, Kitabatake A, Minamino T. Lack of myocardial perfusion immediately after successful thrombolysis. Circulation 1992; 85: 1699-1705.

    Article  CAS  PubMed  Google Scholar 

  77. Ito H, Iwakura K, Oh H, Masuyama T, Hori M, Higashino Y, Fujii K, Minamino T. Temporal changes in myocardial perfusion patterns in patients with reperfused anterior wall myocardial infarction; their relation to myocardial viability. Circulation 1995; 91: 656-62.

    Article  CAS  PubMed  Google Scholar 

  78. Schwaiger M, Muzik O. Assessment of myocardial perfusion by positron emission tomography. Am J Cardiol 1991; 67: 35D-43D.

    Article  CAS  PubMed  Google Scholar 

  79. Schelbert HR, Phelps ME, Hoffman EJ, Huang S-C, Selin CE, Kuhl DE. Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol 1979; 43: 209-18.

    Article  CAS  PubMed  Google Scholar 

  80. Bergmann SR, Hack S, Tewson T, Welch MJ, Sobel BE. The dependence of accumulation of 13NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion. Circulation 1980; 61: 34-43.

    Article  CAS  PubMed  Google Scholar 

  81. Schelbert HR, Phelps ME, Huang S-C, MacDonald NS, Hansen H, Selin C, Kuhl DE. N-13 Ammonia as an indicator of myocardial blood flow. Circulation 1981; 63: 1259-72.

    Article  CAS  PubMed  Google Scholar 

  82. Krivokapich J, Huang S-C, Phelps ME, MacDonald NS, Shine KI. Dependence of 13NH3 myocardial extraction and clearance on flow and metabolism. Am J Physiol 1982; 242: H536-H542.

    CAS  PubMed  Google Scholar 

  83. Gould KL, Schelbert HR, Phelps ME, Hoffman EJ. Noninvasive assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilatation. Am J Cardiol 1979; 43: 200-8.

    Article  CAS  PubMed  Google Scholar 

  84. Bergmann SR, Fox KAA, Rand AL, McElvany KD, Welch MJ, Markham J, Sobel BE. Quantification of regional myocardial blood flow in vivo with H2O. Circulation 1984; 70: 724-33.

    Article  CAS  PubMed  Google Scholar 

  85. Araujo LI, Lammertsma AA, Rhodes CG, McFalls EO, Iida H, Rechavia E, Galassi A, DeSilve R, Jones T, Maseri A. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled cabon dioxide inhalation and positron emission tomography. Circulation 1991; 83: 875-85.

    Article  CAS  PubMed  Google Scholar 

  86. Bol A, Melin JA, Vanoverschelde J-L, Baudhuin T, Vogelaers D, De Pauw M, Michel C, Luxen A, Labar D, Cogneau M, Robert A, Heyndrickx GR, Wijns W. Direct comparison of 13N ammonia and 15O water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation 1993; 87: 512-25.

    Article  CAS  PubMed  Google Scholar 

  87. Knabb RM, Fox KAA, Sobel BE, Bergmann SR. Characterization of the functional significance of subcritical coronary stenosis with H2O and positron-emission tomography. Circulation 1985; 71: 1271-8.

    Article  CAS  PubMed  Google Scholar 

  88. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 1989; 14: 639-52.

    Article  CAS  PubMed  Google Scholar 

  89. Schelbert HR, Czernin J, Huang S-C. Quantitation of regional myocardial blood flow: oxygen-15-water versus nitrogen-13-ammonia. J Nucl Med 1990; 31: 1431-3.

    CAS  Google Scholar 

  90. Goldstein RA. Kinetics of rubidium-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open-chest dogs. J Clin Invest 1985; 75: 1131-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wilson RA, Shea MJ, De Landsheere CM, Turton D, Brady F, Deandield JE, Selwyn AP. Validation of quantitation of regional myocardial blood flow in vivo with 11C-labeled human albumin microspheres and positron emission tomography. Circulation 1984; 70: 717-23.

    Article  CAS  PubMed  Google Scholar 

  92. Shelton ME, Green MA, Mathias CJ, Welch MJ, Bergmann SR. Assessment of regional myocardial and renal blood flow with copper-PTSM and positron emission tomography. Circulation 1990; 82: 990-7.

    Article  CAS  PubMed  Google Scholar 

  93. Wisenberg G, Schelbert HR, Hoffman EJ, Phelps ME, Robinson GD, Selin CE, Child J, Skorton D, Kuhl DE. In vivo quantification regional myocardial blood flow by positronemission computed tomography. Circulation 1981; 63: 1248-58.

    Article  CAS  PubMed  Google Scholar 

  94. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL, Mullani NA, Smalling RW, Nishikawa A, Merhige ME. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation 1989; 79: 825-35.

    Article  CAS  PubMed  Google Scholar 

  95. Schelbert HR, Wisenberg G, Phelps ME, Gould KL, Henze E, Hoffman EJ, Gomes A, Kuhl DE. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation: VI detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Cardiol 1982; 49: 1197-1207.

    Article  CAS  PubMed  Google Scholar 

  96. Brunken R, Tillisch J, Schwaiger M, Child JS, Marshall R, Mandelkern M, Phelps ME, Schelbert HR. Regional perfusion, glucose metabolism, and wall motion in patients with chronic electrocardiographic Q wave infarctions: evidence for persistence of viable tissue in some infarct regions by positron emission tomography. Circulation 1986; 73: 951-63.

    Article  CAS  PubMed  Google Scholar 

  97. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, Schelbert H. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986; 314: 884-8.

    Article  CAS  PubMed  Google Scholar 

  98. Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission compute tomography: 1. Effect of object size. J Comput Assist Tomogr 1979; 3: 299-308.

    Article  CAS  PubMed  Google Scholar 

  99. Robb RA, Wood EH, Ritman EL, Johnson SA, Sturm RE, Graanleaff JF, Gilbert BK, Chevalier PA. Three-dimensional reconstruction and display of the working canine heart and lungs by multiplanar X-ray scanning videodensitometry. Comput Cardiol 1974; 51: 151-63.

    Google Scholar 

  100. Foerster JM, Lantz BMT, Holcroft LJW, Link DP, Mason DT. Angiographic measurement of coronary blood flow by video dilution technique. Acta Radiol Diagnosis 1981; 22: 121-7.

    Article  CAS  Google Scholar 

  101. Foerster JM, Link DP, Lantz BMT, Lee G, Holcroft JW, Mason DT. Measurement of coronary reactive hyperemia during clinical angiography by video dilution technique. Acta Radiol Diagnosis 1981; 22: 209-16.

    Article  CAS  Google Scholar 

  102. Vogel RA, LeFree M, Bates E, O'Neill W, Forster R, Kirlin P, Smith D, Pitt B. Application of digital techniques to selective coronary arteriography: Use of myocardial contrast appearance time to measure coronary flow reserve. Am Heart J 1984; 107: 153-64.

    Article  CAS  PubMed  Google Scholar 

  103. Heintzen P, Moldenhauer K. Roentgen-, Cine-and Videoden-sitometry. Stuttgart: Thieme, 1971: 73-81.

    Google Scholar 

  104. Hodgson JM, LeGrand V, Bates ER, Mancini GBJ, Aueron FM, O'Neill WW, Simon SB, Beauman GJ, LeFree MT, Vogel RA. Validation in dogs of rapid digital angiographic technique to measure relative coronary blood flow during routine cardiac catheterization. Am J Cardiol 1985; 55: 188-93.

    Article  CAS  PubMed  Google Scholar 

  105. Cusma JT, Toggart EJ, Folts JD, Peppler WW, Hangiandreou NJ, Lee CC, Mistretta CA. Digital subtraction angiographic imaging of coronary flow reserve. Circulation 1987; 75: 461-72.

    Article  CAS  PubMed  Google Scholar 

  106. Serruys PW, Zijlstra F, Laarman GJ, Reiber JHC, Beatt K, Roelandt J. A comparison of two methods to measure coronary flow reserve in the setting of coronary angioplasty: intracoronary blood flow velocity measurments with a Doppler catheter, and digital subtraction cineangiography. Eur Heart J 1989; 10: 725-36.

    Article  CAS  PubMed  Google Scholar 

  107. Zijlstra F, Reiber JHC, Juliere Y, Serruys PW. Normalization of coronary flow reserve by percutaneous transluminal coronary angioplasty. Am J Cardiol 1988; 61: 55-60.

    Article  CAS  PubMed  Google Scholar 

  108. Hodgson JM, Riley RS, Most AS, Williams DO. Assessment of coronary flow reserve using digital angiography before and after successful percutaneous transluminal coronary angioplasty. Am J Cardiol 1987; 60: 61-5.

    Article  CAS  PubMed  Google Scholar 

  109. Geldof MJA, Schalij MJ, Manger Cats V, Van der Zwet PMJ, Steendijk P, Van der Velde ET, Nagtegaal E, Reiber JHC, Bruschke AVG. Comparison between regional myocardial perfusion reserve and coronary flow reserve in the canine heart. Eur Heart J 1995; 16: 1860-71.

    Article  CAS  PubMed  Google Scholar 

  110. Pijls NHJ, Uijen GJH, Hoevelaken A, Arts T, Aengevaeren WRM, Bos HS, Fast JH, Van Leeuwen KL, Van der Werf T. Mean transit time for assessment of myocardial perfusion by videodensitometry. Circulation 1990; 81: 1331-40.

    Article  CAS  PubMed  Google Scholar 

  111. Pijls NHJ, Aengevaeren WRM, Uijen GJH, Hoevelaken A, Pijnenburg T, Van Leeuwen K, Van der Werf T. Concept of maximal flow ratio for immediate evaluation of percutaneous transluminal coronary angioplasty results by videodensitometry. Circulation 1991; 83: 854-65.

    Article  CAS  PubMed  Google Scholar 

  112. Eigler NL, Pfaff MJ, Zeiher A, Whiting JS, Forrester JS. Digital angiographic impulse response analysis of regional myocardial perfusion: linearity, reproducibility, accuracy, and comparison with conventional indicator dilution curve parameters in phantom and canine models., Circ Res 1989; 64: 853-66.

    Article  CAS  PubMed  Google Scholar 

  113. Eigler NL, Schühlen H, Whiting JS, Pfaff JM, Zeiher A, Gu S. Digital angiographic impulse response analysis of regional myocardial perfusion. Estimation of coronary flow, flow reserve, and distribution volume by compartmental transit time measurement in a canine model. Circ Res 1991; 68: 870-80.

    Article  CAS  PubMed  Google Scholar 

  114. Schühlen H, Eigler NL, Whiting JS. Digital angiographic impulse response analysis of regional myocardial perfusion. Detection of autoregulatory changes in nonstenotic coronary arteries induced by collateral flow to adjacent stenotic arteries. Circulation 1994; 89: 1004-12.

    Article  PubMed  Google Scholar 

  115. Schühlen H, Eigler NL, Zeiher AM, Rombach MM, Whiting JS. Digital angiographic assessment of the physiological changes to the regional microcirculation induced by successful coronary angioplasty. Circulation 1994; 90: 163-71.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolters-Geldof, M., Manger Cats, V. & Bruschke, A. Clinical methods to determine coronary flow and myocardial perfusion. Int J Cardiovasc Imaging 13, 79–94 (1997). https://doi.org/10.1023/A:1005709624407

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005709624407

Navigation