Skip to main content
Log in

Geometric Analysis and Symbol Calculus: Fourier Transform Magnetic Resonance Imaging and Wavelets

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Due to its unequalled advantages, the magnetic resonance imaging (MRI) modality has truly revolutionized the diagnosis and evaluation of pathology. Because many morphological anatomic details that may not be visualized by other high tech imaging methods can now be readily shown by diagnostic MRI, it has already become the standard modality by which all other clinical imaging techniques are measured. The unique quantum physical basis of the MRI modality combined with the imaging capabilities of current computer technology has made this imaging modality a target of interdisciplinary interest for clinicians, physicists, biologists, engineers, and mathematicians. Due to the fact that MRI scanners perform corticomorphic processing, this modality is by far more complex than all the other high tech clinical imaging techniques. The purpose of this paper is to outline a phase coherent wavelet approach to Fourier transform MRI. It is based on distributional harmonic analysis on the Heisenberg nilpotent Lie group G and the associated symplectically invariant symbol calculus of pseudodifferential operators. The contour and contrast resolution of MRI scans which is controlled by symplectic filter bank processing gives the noninvasive MRI modality superiority over X-ray computed tomography (CT) in soft tissue differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, C. M., Edelman, R. R. and Turski, P. A.: Clinical Magnetic Resonance Angiography, Raven Press, New York, 1993.

    Google Scholar 

  2. Barkovich, A. J.: Pediatric Neuroimaging, 2nd edn, Raven Press, New York, 1995.

    Google Scholar 

  3. Bauer, R., van de Flierdt, E., Mörike, K. and Wagner-Manslau, C.: MR Tomography of the Central Nervous System, 2nd edn, Gustav Fischer Verlag, Stuttgart, Jena, New York, 1993.

    Google Scholar 

  4. Beltran, J.: Current Review of MRI, 1st edn, CM Current Medicine, Philadelphia, PA, 1995.

    Google Scholar 

  5. Berquist, T. H.: MRI of the Musculoskeletal System, 3rd edn, Lippincott-Raven Publishers, Philadelphia, New York, 1996.

    Google Scholar 

  6. Bisese, J. H. and Wang, A.-M.: Pediatric Cranial MRI: An Atlas of Normal Development, Springer-Verlag, New York, Berlin, Heidelberg, 1994.

    Google Scholar 

  7. Brezin, J.: Geometry and the method of Kirillov, in: J. Carmona, J. Dixmier and M. Vergne (eds), Non-Commutative Harmonic Analysis, Lecture Notes in Math. 466, Spinger-Verlag, Berlin, Heidelberg, New York, 1975, pp. 13–25.

    Google Scholar 

  8. Brown, J. J. and Wippold II, F. J.: Practical MRI: A Teaching File, Lippincott-Raven Publishers, Philadelphia, New York, 1995.

    Google Scholar 

  9. Carpenter, G. A.: Neural network models for pattern recognition and associative memory, Neural Networks 2 (1989), 243–257.

    Google Scholar 

  10. Cohen, M. S. and Bookheimer, S. Y.: Localization of brain function using magnetic resonance imaging, Trends in Neurosciences 17 (1994), 268–277.

    Google Scholar 

  11. Crooks, L. E. and Rothschild, P.: Clinical imaging, in: D. M. S. Bagguley (ed.), Pulsed Magnetic Resonance: NMR, ESR, and Optics, A Recognition of E.L. Hahn, Clarendon Press, Oxford, 1992, pp. 346–361.

    Google Scholar 

  12. Damadian, R., Goldsmith, M. and Minkoff, L.: Fonar image of the live human body, Physiol. Chem. Phys. Med. NMR 9 (1977), 97–105.

    Google Scholar 

  13. Diaz, R. and Robins, S.: Pick's formula via the Weierstrass ℘-function, Amer. Math. Monthly 102 (1995), 431–437.

    Google Scholar 

  14. Dieudonné, J. A.: La Géometrie des Groupes Classiques, 3rd edn, Ergeb. Math. Grenzgeb. 5, Springer-Verlag, Berlin, Heidelberg, New York, 1971.

    Google Scholar 

  15. Dung, D. and Schempp, W.: Geometric analysis: The double-slit interference experiment and magnetic resonance imaging, Vietnam J. Math. (in press).

  16. Du, Y. P., Parker, D. L. and Davis, W. L.: Vessel enhancement filtering in three-dimensional MR angiography, JMRI 5 (1995), 353–359.

    Google Scholar 

  17. Ellermann, J., Garwood, M., Hendrich, K., Hinke, R., Hu, X., Kim, S.-G., Menon, R., Merkle, H., Ogawa, S. and Uğurbil, K.: Functional imaging of the brain by nuclear magnetic resonance, in: R. J. Gillies (ed.), NMR in Physiology and Biomedicine, Academic Press, San Diego, New York, Boston, 1994, pp. 137–150.

    Google Scholar 

  18. Elliott, G. A., Natsume, T. and Nest, R.: Cyclic cohomology for one-parameter smooth crossed products, Acta Math. 160 (1988), 285–305.

    Google Scholar 

  19. Felix, R.: When is a Kirillov coadjoint orbit a linear variety? Proc. Amer. Math. Soc. 86 (1982), 151–152.

    Google Scholar 

  20. Grossman, C. B.: MRI and CT of the Head and Spine, 2nd edn, Williams & Wilkins, Baltimore, MD, 1996.

    Google Scholar 

  21. Hahn, E. L.: NMR and MRI in retrospect, Phil. Trans. R. Soc. London A 333 (1990), 403–411; also in: P. Mansfield and E. L. Hahn (eds), NMR Imaging, The Royal Society, London, 1990, pp. 1–9.

    Google Scholar 

  22. Hauptman, H.: A minimal principle in the direct methods of X-ray crystallography, in: J. S. Byrnes and J. L. Byrnes (eds), Recent Advances in Fourier Analysis and Its Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 1990, pp. 3–15.

    Google Scholar 

  23. Helgason, S.: Geometric Analysis on Symmetric Spaces, Math. Surveys Monographs, 39, Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  24. Hörmander, L.: The Weyl calculus of pseudodifferential operators, Comm. Pure Appl. Math. 32 (1979), 359–443.

    Google Scholar 

  25. Holden, M., Steen, E. and Lundervold, A.: Segmentation and visualization of brain lesions in multispectral magnetic resonance imaging, Computerized Medical Imaging and Graphics 19 (1995), 171–183.

    Google Scholar 

  26. Kim, J. K., Plewes, D. B. and Henkelman, R. M.: Phase constrained encoding (PACE): A technique for MRI in large static field inhomogeneities, Magn. Reson. Med. 33 (1995), 497–505.

    Google Scholar 

  27. Kostant, B.: Symplectic spinors, in: Geometria Simplettica e Fisica Matematica, Symposia Math. 14, Istituto Nazionale di Alta Matematica Roma, Academic Press, London, New York, 1974, pp. 139–152.

    Google Scholar 

  28. Kucharczyk, J., Moseley, M. and Barkovich, J. A.: Magnetic Resonance Neuroimaging, CRC Press, Boca Raton, Ann Arbor, London, 1994.

    Google Scholar 

  29. Kumar, A., Welti, D. and Ernst, R. R.: NMR Fourier zeugmatography, J. Magn. Reson. 18 (1975), 69–83.

    Google Scholar 

  30. Kuzniecky, R. I. and Jackson, G. D.: Magnetic Resonance in Epilepsy, Raven Press, New York, 1995.

    Google Scholar 

  31. Lauterbur, P. C.: Image formation by induced local interactions: Examples employing nuclear magnetic resonance, Nature (London) 242 (1973), 190–191.

    Google Scholar 

  32. Lee, A. T., Glover, G. H. and Meyer, C. H.: Discrimination of large venous vessels in time-course spiral blood-oxygen-level-dependent magnetic-resonance functional neuroimaging, Magn. Reson. Med. 33 (1995), 745–754.

    Google Scholar 

  33. Leith, E. N.: Synthetic aperture radar, in: D. Casasent (ed.), Optical Data Processing, Topics in Appl. Phys. 23, Springer-Verlag, Berlin, Heidelberg, New York, 1978, pp. 89–117.

    Google Scholar 

  34. Leith, E. N.: Optical processing of synthetic aperture radar data, in: H. Zmuda and E. N. Toughlian (eds), Photonic Aspects of Modern Radar, Artech House, Boston, London, 1994, pp. 381–401.

    Google Scholar 

  35. Leith, E. N. and Ingalls, A. L.: Synthetic antenna data processing by wavefront reconstruction, Appl. Opt. 7 (1968), 539–544.

    Google Scholar 

  36. Liu, G., Sobering, G., Duyn, J. and Moonen, C. T. W.: A functional MRI technique combining principles of echo-shifting with a train of observations (PRESTO), Magn. Reson. Med. 30 (1993), 764–768.

    Google Scholar 

  37. Lu, D. and Joseph, P. M.: A matched filter echo summation technique for MRI, Magn. Reson. Imag. 13 (1995), 241–249.

    Google Scholar 

  38. MacFall, J. R., Pelc, N. J. and Vavrek, R. M.: Correction of spatially dependent phase shifts for partial Fourier imaging, Magn. Reson. Imag. 6 (1988), 143–155.

    Google Scholar 

  39. Mansfield, P., Blamire, A. M., Coxon, R., Gibbs, P., Guilfoyle, D. N., Harvey, P. and Symms, M.: Snapshot echo-planar imaging methods: Current trends and future perspectives, Phil. Trans. R. Soc. London A 333 (1990), 495–506; also in: P. Mansfield and E. L. Hahn (eds), NMR Imaging, The Royal Society, London, 1990, pp. 93–104.

    Google Scholar 

  40. Mansfield, P.: Imaging by nuclear magnetic resonance, in: D. M. S. Bagguley (ed.), Pulsed Magnetic Resonance: NMR, ESR, and Optics, A Recognition of E. L. Hahn, Clarendon Press, Oxford, 1992, pp. 317–345.

    Google Scholar 

  41. Meiboom, S. and Gill, D.: Modified spin-echo method for measuring nuclear relaxation times, Rev. Sci. Instr. 29 (1958), 668–691. Also in: NMR in E. Fukushima (ed.), Biomedicine: The Physical Basis, Key Papers in Physics, No. 2, American Institute of Physics, New York, 1989, pp. 80–83.

    Google Scholar 

  42. Miller, D. H. and McDonald, W. I.: Neuroimaging in multiple sclerosis, Clinical Neuroscience 2 (1994), 215–224.

    Google Scholar 

  43. Moore, C. C. and Wolf, J. A.: Square integrable representations of nilpotent groups, Trans. Amer. Math. Soc. 185 (1973), 445–462.

    Google Scholar 

  44. Ogawa, S., Menon, R. and Ugurbil, K.: Current topics on the mechanism of fNMRI signal changes, Quart. Magn. Res. Biol. Med. 2 (1995), 43–51.

    Google Scholar 

  45. Ros, P. R. and Dean Bidgood, Jr., W.: Abdominal Magnetic Resonance Imaging, Mosby-Year Book, St. Louis, Baltimore, Boston, 1993.

    Google Scholar 

  46. Schempp, W.: Harmonic Analysis on the Heisenberg Nilpotent Lie Group, with Applications to Signal Theory, Pitman Res. Notes in Math. Series, 147, Longman Scientific and Technical, London, 1986.

    Google Scholar 

  47. Schempp, W.: Phase coherent wavelets, Fourier transform magnetic resonance imaging, and synchronized time-domain neural networks, in: I. V. Volovich, Yu. N. Drozhzhinov, and A. G. Sergeev (eds), Selected Questions of Mathematical Physics and Analysis, Proc. Steklov Inst. Math. 203, Amer. Math. Soc., Providence, RI, 1995, pp. 323–351.

    Google Scholar 

  48. Schempp, W.: Quantum holography and magnetic resonance imaging, in: S. I. Najafi, N. Peyghambarian, and M. Fallahi (eds), Circular-Grating, Light-Emitting Sources, SPIE 2398, Bellingham, WA, 1995, pp. 34–40.

    Google Scholar 

  49. Schempp, W.: Magnetic Resonance Imaging: Mathematical Foundations and Applications, Wiley, New York (in press).

  50. Schwartz, L.: Sous-espaces hilbertiens d'espaces vectoriels topologiques et noyaux associés (noyaux reproduisants), J. Anal. Math. 13 (1964), 115–256.

    Google Scholar 

  51. Schwartz, L.: Sous-espaces hilbertiens et noyaux associés; applications aux représentations des groupes de Lie, deuxième colloq. l'anal. fonct., Centre Belge Recherches Mathématiques, Librairie Universitaire, Louvain, 1964, pp. 153–163.

    Google Scholar 

  52. Shucker, D. S.: Square integrable representations of unimodular groups, Proc. Amer. Math. Soc. 89 (1983), 169–172.

    Google Scholar 

  53. Tonumura, A.: Electron Holography, Springer Series in Optical Sciences 70, Springer-Verlag, Berlin, Heidelberg, New York, 1993.

    Google Scholar 

  54. Truwit, C. L. and Lempert, T. E.: High Resolution Atlas of Cranial Neuroanatomy, Williams & Wilkins, Baltimore, MD, 1994.

    Google Scholar 

  55. van der Knaap, M. S. and Valk, J.: Magnetic Resonance of Myelin, Myelination, and Myelin Disorders, 2nd edn, Springer-Verlag, Berlin, Heidelberg, New York, 1995.

    Google Scholar 

  56. Vellet, D.: Magnetic resonance imaging of the body: Abdomen and pelvis, in: M. J. Bronskill, P. Sprawls (eds), The Physics of MRI, Medical Physics Monographs, No. 21, Amer. Inst. Phys., Woodbury, New York, 1993, pp. 449–477.

    Google Scholar 

  57. Vogl, T. J.: MR-Angiographie und MR-Tomographie des Gefäßsystems, Springer-Verlag, Berlin, Heidelberg, New York, 1995.

    Google Scholar 

  58. Weil, A.: Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143–211; also in: Collected Papers, Vol. III (1964–1978), Springer-Verlag, New York, Heidelberg, Berlin, 1980, pp. 1–69.

    Google Scholar 

  59. Worthington, B. S., Firth, J. L., Morris, G. K., Johnson, I. R., Coxon, R., Blamire, A. M., Gibbs, P. and Mansfield, P.: The clinical potential of ultra-high-speed echo-planar imaging, Phil. Trans. R. Soc. London A 333 (1990), 507–514; also in: P. Mansfield and E. L. Hahn (eds), NMR Imaging, The Royal Society, London, 1990, pp. 105–112.

    Google Scholar 

  60. Yock, Jr., D. H.: Magnetic Resonance Imaging of CNS Disease, Mosby-Year Book, St. Louis, Baltimore, Berlin, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schempp, W. Geometric Analysis and Symbol Calculus: Fourier Transform Magnetic Resonance Imaging and Wavelets. Acta Applicandae Mathematicae 48, 185–234 (1997). https://doi.org/10.1023/A:1005704725676

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005704725676

Navigation