Skip to main content
Log in

Endovascular stents: a ‘break through technology’, future challenges

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

Coronary stents were developed to overcome the two main limitations of balloon angioplasty, acute occlusion and long term restenosis. Coronary stents can tack back intimal flaps and seal the dissected vessel wall and thereby treat acute or threatened vessel closure after unsuccessful balloon angioplasty. Following successful balloon angioplasty stents can prevent late vessel remodeling (chronic vessel recoil) by mechanically enforcing the vessel wall and resetting the vessel size resulting in a low incidence of restenosis. All currently available stents are composed of metal and the long-term effects of their implantation in the coronary arteries are still not clear. Because of the metallic surface they are also thrombogenic, therefore rigorous antiplatelet or anticoagulant therapy is theoretically required. Furthermore, they have an imperfect compromise between scaffolding properties and flexibility, resulting in an unfavourable interaction between stents and unstable or thrombus laded plaque. Finally, they still induce substantial intimal hyperplasia which may result in restenosis. Future stent can be made less thrombogenic by modifying the metallic surface, or coating it with an antithrombotic agent or a membrane eluting an antithrombotic drug. The unfavourable interaction with the unstable plaque and the thrombus burden can be overcome by covering the stent with a biological conduit such as a vein, or a biodegradable material which can be endogenous such as fibrin or exogenous such as a polymer. Finally the problem of persisting induction of intimal hyperplasia may be overcome with the use of either a radioactive stent or a stent eluting an antiproliferative drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serruys PW, de Jaegere P, Kiemeneij, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, Belardi J, Sigwart U, Colombo A, Goy JJ, Vandenheuvel P, Delcan J, Morel MA. On behalf of the Benestent Study Group. A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 1994; 331: 489-95.

    Google Scholar 

  2. Fischman DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn IM, Detre K, Veltri L, Ricci D, Nobuyoshi M, Cleman MW, Heuser R, Almond D, Teirstein PS, Fish RD, Colombo A, Brinker J, Moses J, Shaknovich A, Hirshfeld J, Bailey S, Ellis S, Rake R, Goldberg S. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med 1994; 331: 496-501.

    Google Scholar 

  3. Sigwart U, Puel J, Mirkovitch V, et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N Engl J Med 1987; 316: 701-706.

    Google Scholar 

  4. Serruys PW, Strauss BH, Beatt KJ, Bertrand ME, Puel J, Rickards A, Meier B, Goy JJ, Vogt P, Kappenberger L, Sigwart U. Angiographic follow-up after placement of a self-expanding coronary artery stent. N Engl J Med 1991; 334: 13-7

    Google Scholar 

  5. Keane D, Buis B, Reifart N, Plokker TH, Ernst J, Mast E, Renkin J, Heyndrickx G, Morel M, de Jaegere P, Serruys PW. Clinical and angiographic outcome following implantation of the new Less Shortening Wallstent in aorto-coronary vein grafts: Introduction of a second generation stent in the clinical arena. J Interventional Cardiol 1994; 7: 557-64.

    Google Scholar 

  6. Keane D, de Jaegere P, Serruys PW. Structural design, clinical experience and current indications of the coronary Wallstent. Cardiology Clinics 1994; 12: 689-97.

    Google Scholar 

  7. Ozaki Y, Keane D, Ruygrok P, van der Giessen WJ, de Feyter PJ, Serruys PW. Six-month clinical and angiographic outcome of the new less shortening Wallstent in native coronary arteries. Circulation 1996; In press.

  8. Ozaki Y, Violaris AG, Hamburger JN, Melkert R, Foley D, Keane D, de Feyter PJ, Serruys PW. Short-and long-term clinical and quantitative angiographic results with the new less shortening Wallstent for vessel reconstruction in chronic total occlusion. J Am Coll Cardiol 1996; In press.

  9. Schatz RA, Baim DS, Leon M, et al. Clinical experience with the Palmaz-Schatz coronary stent: initial results of a multicenter study. Circulation 1991; 83: 148-61.

    Google Scholar 

  10. Herrmann HC, Buchbinder M, Clemen M, Fischman D, Goldberg S, Leon MB, Schatz RA, Teirstein P, Walker CM, Hirshfeld JW. Emergent use of balloon-expandable stenting for failed percutaneous transluminal coronary angioplasty Circulation 1992; 86: 812-19.

    Google Scholar 

  11. Colombo A, Goldberg SL, Almagor Y, Maiello L, Finci L. A novel strategy for stent deployment in the treatment of acute or threatened closure complicating balloon coronary angioplasty. Use of short or standard (or both) single or multiple Palmaz-Schatz stents. J Am Coll Cardiol 1993; 22: 1887-91.

    Google Scholar 

  12. Haude M, Erbel R, Issa H, Meyer J. Quantitative analysis of elastic recoil after balloon angioplasty and after intracoronary implantation of balloon expandable Palmaz-Schatz stents. J Am Coll Cardiol 1993; 21: 26-34.

    Google Scholar 

  13. Goldberg SL, Colombo A, Nakamura S, Almagor Y, Maiello L, Tobis JM. Benefit of intracoronary ultrasound in the deployment of Palmaz-Schatz stents. J Am Coll Cardiol 1994; 24: 996-1003

    Google Scholar 

  14. Schömig A, Kastrati A, Dietz R, Rauch B, Neumann FJ, Katus HH, Busch U. Emergency coronary stenting for dissection during percutaneous transluminal coronary angioplasty: Angio-graphic follow-up after stenting and after repeat angioplasty of the stented segment. J Am Coll Cardiol 1994; 23: 1053-60.

    Google Scholar 

  15. Nakamura S, Colombo A, Gaglione A, Almagor Y, Goldberg SL, Maiello L, Finci L, Tobis JM. Intracoronary ultrasound observations during stent implantation. Circulation 1994; 89: 2026-34.

    Google Scholar 

  16. Mudra H, Blasini R, Kroetz M, Rieber J, Regar E, Thiesen K. Ultrasound guidance of Palmaz-Schatz intracoronary stenting with a combined intravscular ultrasound balloon catheter. Circulation 1994; 90: 1252-61

    Google Scholar 

  17. Wong SC, Popma JJ, Pichard AD, et al. A comparison of clinical and angiographic outcomes after saphenous vein graft angioplasty using coronary versus ‘biliary’ tubular-slotted stents. Circulation 1995; 91: 339-50.

    Google Scholar 

  18. Colombo A, Hall P, Nakamura S, Almagor Y, Maiello L, Martini G, Gaglione A, Goldberg SL, Tobis JM. Intracoronary stenting without anticoagulation accomplished with intravscular ultrasound guidance. Circulation 1995; 91: 1676-88.

    Google Scholar 

  19. Ikai Y, Yamaguchi T, Tamura T, Saeki F, Hara K. Site of restenosis in Palmaz-Schatz coronary stent. Circulation 1993; 88(Suppl): I-641 (abstr).

    Google Scholar 

  20. Roubin GS, Cannon AD, Agrawal SK, Macander PJ, Dean LS, Baxley WA, Breland J. Intracoronary stenting for acute and threatened closure complicating percutaneous transluminal coronary angioplasty. Circulation 1992; 85: 916-27.

    Google Scholar 

  21. Lincoff AM, Popma JJ, Ellis SG, Hacker JA, Topol EJ. Abrupt vessel closure complicating coronary angioplasty: Clinical, angiographic and therapeutic profile. J Am Coll Cardiol 1992; 19: 926-35.

    Google Scholar 

  22. Hearn AJ, King SB, Douglas JS, Carlin SF, Lembo NJ, Ghazzal ZMB. Clinical and angiographic outcomes after coronary artery stenting for acute or threatened closure following percutaneous transluminal coronary angioplasty. Initial results with a balloon-expandable stainless steel design. Circulation 1993; 88: 2086-96.

    Google Scholar 

  23. Lincoff AM, Topol EJ, Chapekis AT, George BS, Candela RJ, Muller DW, Zimmerna CA, Ellis SG. Intracoronary stenting compared with conventional therapy for abrupt vessel closure complicating coronary angioplasty: A matched case-control study. J Am Coll Cardiol 1993; 21: 866-75.

    Google Scholar 

  24. George BS, Voorhees WD, Roubin GS, Feanot NE, Pinkerton CA, Raizner AE, King SB, Holmes DR, Topol EJ, Kereiakes DJ, Hartzler GO. Multicenter investigation of coronary stenting to treat acute or threatened closure after percutaneous transluminal coronary angioplasty: Clinical and angiographic outcomes. J Am Coll Cardiol 1993; 22: 135-43.

    Google Scholar 

  25. Sutton JM, Ellis SG, Roubin GS, Pinkerton CA, King SB III, Raizner AE, Holmes DR, Keriakes DJ, Topol EJ, for the Gianturco-Roubin Intracoronary Stent investigator Group. Major clinical events after coronary stenting. Circulation 1994; 89: 1126-37.

    Google Scholar 

  26. Keane D, Roubin G, Marco J, Fearnot N, Serruys PW. GRACE — Gianturco-Roubin stent in Acute Closure Evaluation: Substrate, challenges and design of a randomized trial of bailout therapy. J Interventional Cardiol 1994; 7: 333-9.

    Google Scholar 

  27. Serruys PW, deJaegere P, Bertrand M, Kober G, Marquis JF, Piessens J, Uebis R, Valeix B, Wiegrand V. Morphologic change in coronary artery stenosis with the Medtronic Wiktor stent: Initial results from the core laboratory for quantitative angiography. Cathet Cardiovasc Diagn 1991; 24: 237-45.

    Google Scholar 

  28. de Jaegere P, Serruys PW, Bertrand M, et al. Wiktor stent implantation in patients with restenosis following balloon angioplasty of a native coronary artery. Am J Cardiol 1992; 69: 598-602.

    Google Scholar 

  29. deJaegere P, Serruys PW, Bertrand M, et al. Angiographic predictors of recurrence of restenosis after Wiktor stent implantation in native coronary arteries. Am J Cardiol 1993; 72: 165-70.

    Google Scholar 

  30. Medina A, Melian F, Saurez de Lezo J, Pan Manuel P, Romero M, Hernandez E, Marrero J, Ortega J, Pavlovic D. Effectiveness of coronary stenting for the treatment of chronic total occlusion in angina pectoris. Am J Cardiol 1994; 73: 1222-4.

    Google Scholar 

  31. Ozaki Y, Keane D, Nobuyoshi M, Hamasaki N, Popma JJ, Serruys PW. Coronary lumen at 6 month follow-up of the new radiopaque tantalum stent using quantitative angiography and Intracoronary ultrasound. Am J Cardiol 1995; 76: 1135-42.

    Google Scholar 

  32. Sigwart U, Haber RH, Kowlachuk GJ, Simonton CA, Buller NP, Virmani R. The new ACS metallic stent: Experimental and clinical experience. Circulation 1993; 88: I-646 (abstr).

    Google Scholar 

  33. Ozaki Y, Keane D, Ruykrok P, de Feyter PJ, Stertzer S, Serruys PW. Acute clinical and angiographic results with the new AVE micro coronary stent in bailout management. Am J Cardiol 1995; 76: 112-16.

    Google Scholar 

  34. Hamasaki N, Nosaka H, Nobuyoshi M. Initial experience of Cordis stent implantation. J Am Coll Cardiol 1995; 25(Suppl): 239A (abstr).

    Google Scholar 

  35. Almagor Y, Richter K, Di Mario C, Itoh A, Di Francesco L, Ferraro M, Maiello L, Blengino S, Leon MB, Colombo A. Treatment of long lesions in small tortuous coronary vessels with a new intravascular rigid-flex (NIR) stent. J Am Coll Cardiol 1996; 27(Suppl): 110A (abstr).

    Google Scholar 

  36. Hehrlein C, Zimmerman M, Grunze M, Metz J, Wolf GK, von Hodenberg E. Characteristics of metallicly modified stents and their influence on neointima formation in rabbits. Eur Heart J 1993; 14(Suppl): 321

    Google Scholar 

  37. van der Giessen WJ, Serruys PW, Visser WJ et al. Endothelialisation of intravascular stents. J Interven Cardiol 1988; 1: 109-120

    Google Scholar 

  38. Dichek DA, Neville RF, Zwiebel JA et al. Seeding of intravascular stents with genetically engineered endothelial cells. Circulation 1989; 80: 1347-53

    Google Scholar 

  39. Sawa H, Vinogradsky B, Guala A, Fuji S. Genetically engineered endothelial cells; increased surface fibrinolysis and potential application to endovascular stenting. Circulation 1995; 92(Suppl): I-537

    Google Scholar 

  40. de Scheeder IK, Wang K, Wilczek KL, Meuleman D, Piessens JH. Heparin coating of metallic coronary stents decreases their thrombogenicity but does not decrease neointimal hyperplasia. Circulation 1995; 92(Suppl): I-537

    Google Scholar 

  41. Jeong MHJ, Owen WG, Staab ME, Srivatsa SS, Gregoire J, Wen D, Sangiorgi G, Pompili VJ, Stewart ML, Camrud AR, Arndt L, Schwartz RS. Does heparin release coating of the Wallstent limit thrombosis and platelet deposition? Results in a porcine carotid injury model. Circulation 1995; 92(Suppl): I-37

    Google Scholar 

  42. Chronos NAF, Robinson KA, Kelly AB, Yoklavich M, Rowland SM, Narayan PN, Harker LA, Hanson SR. Thrombogenicity of tantalum stents is decreased by surface heparin bonding; Scintigraphy of IIIn-platelet deposition in baboon carotid arteries. Circulation 1995; 92(Suppl): I-490

    Google Scholar 

  43. Heyndrickx GR on behalf of the Benestent study group. Benestent II pilot study: In hospital results of phases 1, 2, 3 and 4. Circulation 1995; 92(Suppl): I-279

    Google Scholar 

  44. Serruys PW on behalf of the Benestent study group. Benestent II pilot study: 6 month follow up of phases 1, 2, 3. Circulation 1995; 92(Suppl): I-542

    Google Scholar 

  45. van der Giessen WJ, van Beusekom HMM, van Houten CD et al. Coronary stenting with polymer coated and uncoated self-expanding endoprostheses in pigs. Coronary artery disease 1992; 3: 237-248

    Google Scholar 

  46. Aggarwal RK, Ireland DC, Azrin MA, Ezekowitz MD, De Bono DP, Gershlick AH. Antithrombotic properties of stents eluting platelet glycoprotein IIb/IIIa antibody. Circulation 1995; 92(Suppl): I-488

    Google Scholar 

  47. Schwartz RS, Huber KC, Edwards WD et al. Native fibrin as a biocompatible absorbable material for intracoronary stent implant and drug delivery. J Am Coll Cardiol 1992; 19(Suppl A); 171A

    Google Scholar 

  48. Stefanadis C, Tsiamis E, Toutouzas K, Vlachopoulos C, Kallikazaros I, Stratos C, Vavuranakis M, Sideris A, Toutouzas P. Autologous vein graft coated stent for the treatment of coronary artery disease; immediate results after percutaneous implantation in humans. J Am Coll Cardiol 1996; 27(Suppl A); 179A

    Google Scholar 

  49. Sheth S, Litvack F, Fishbein MC, Forrester JS, Eigler NL. Reduced thrombogenicity of polished and unpolished nitinol versus stainless steel slotted-tube stents in a pig coronary artery model. J Am Coll Cardiol 1996;27(Suppl A); 197A

    Google Scholar 

  50. Carter AJ, Laird JR, Kovach JA, Hooper TG, Bailey LR, Pierce K, Hess K, Farb A, Virmani R. Favourable arterial remodeling and reduced neointimal formation with a nitinol self-expanding stent. J Am Coll Cardiol 1996; 27(Suppl A); 109A

    Google Scholar 

  51. Henry M, Amor M, Henry I, Beyar R, Le Borgne E. Initial experience with the Instent Nitinal permanent and temporary stents. Circulation 1995; 92(Suppl): I-57

    Google Scholar 

  52. Beyar R, Roguin A, Grenadier E, Markiewicz W. The nitinol self expanding coronary stent: Acute angiographic and clinical results of the pilot registry. J Am Coll Cardiol 1996; 27(Suppl A); 54A

    Google Scholar 

  53. van der Giessen, Lincoff AM, Schwartz RS, van Beusekom HMM, Serruys PW, Holmes DR, Ellis SG, Topol EJ. Biocompatibility of synthetic biodegradable and biostable polymers after implantation in the porcine coronary arteries. Eur Heart J 1993; 14(Suppl): 352

    Google Scholar 

  54. Eccleston DS, Lincoff AM, Furst JG. Administration of Colchicine using a novel prolonged delivery stent produces a marked local biological effect within the porcine coronary artery. Circulation 1995; 92(Suppl): I-87

    Google Scholar 

  55. Waksman R, Robinson KA, Crocker IR, Gravanis MB, Palmer SJ, Wang C, Cipolla GD, King SB III. Intracoronary radiation before stent implantation inhibits neointima formation in stented porcine coronary arteries. Circulation 1995; 92: 1383-86

    Google Scholar 

  56. Teirstein Ps, Massullo V, Jani S, Russo RJ, Schatz RA, Steuterman S, Morris NB, Tripuraneni P. Catheter based radiation therapy to inhibit restenosis following coronary stenting. Circulation 1995; 92(Suppl): I-543

    Google Scholar 

  57. Hehrlein C, Zimmerman M, Metz J, Fehsenfeld P, von Hodenberg E. Radioactive stent implantation inhibits neointimal proliferation in non-atherosclerotic rabbits. Circulation 1993; 88(Suppl I): I-65

    Google Scholar 

  58. Laird JR, Carter AJ, Kufs WM, Hoopes TG, Farb A, Nott S, Fischell RE, Fischell DR, Vitami R, Fischell TA. Inhibition of neointimal proliferation with a beta particle emitting stent. J Am Coll Cardiol 1995; 26(Suppl A): 287A

    Google Scholar 

  59. Carter AJ, Laird JR, Hoopes TG, Bailey LR, Farb A, Fischell RE, Fischell DR, Virmani R, Fischell TA. Histology after placement of beta particle emitting stents; insights into inhibition of neointimal formation. J Am Coll Cardiol 1996; 27(Suppl A); 198A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Violaris, A.G., Ozaki, Y. & Serruys, P.W. Endovascular stents: a ‘break through technology’, future challenges. Int J Cardiovasc Imaging 13, 03–13 (1997). https://doi.org/10.1023/A:1005703106724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005703106724

Navigation