Skip to main content
Log in

Phenylheptatriyne Variation in Bidens alba Var. radiata Leaves

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Variation of phenylheptatriyne (PHT) in leaves of Bidens alba (Linn.) var. radiata (Shultz-Bip.) was investigated across its Florida range, throughout the year, and in response to the photoenvironment. A survey of PHT in B. alba leaves was done at 13 sites in Florida and three sites throughout the year. PHT concentrations differed among populations (P < 0.001), but little of the variation was explained by latitude (R2 = 0.024) or longitude (R2 = 0.022). Leaf concentrations of PHT fluctuated throughout the year (P < 0.001); they were highest in October and lowest in January and April. Experimental manipulations of light quality and quantity caused increased PHT accumulation when UV wavelengths were filtered out and decreased accumulation under low R/FR treatments. Low light levels did not significantly influence the concentration of PHT on a dry weight basis, but did decrease leaf biomass and PHT levels on a leaf area basis. The results suggest that PHT in B. alba leaves varies in nature and that light quality affects PHT biosynthesis in situ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • ALENIUS, C. M., VOGELMANN, T. C., and BORNMAN, J. F. 1995. A three dimensional representation of the relationship between penetration of UV-B radiation and UV-screening pigments in leaves of Brassica napus. New Phytol.131:297-302.

    Google Scholar 

  • ARNASON, T., WAT, C. K., DOWNUM, K. R., YAMAMOTO, E., GRAHAM, E. A., and TOWERS, G. H. N. 1980. Photosensitization of Escherichia coliand Saccharomyces cervisiaeby phenylheptatriyne from Bidens pilosa. Can. J. Microbiol.26:698-705.

    PubMed  Google Scholar 

  • ARNASON, T., SWAIN, T., WAT, C. K., GRAHAM, E. A., PARTINGTON, S., and TOWERS, G. H. N. 1981. Mosquito larvacidal activity of polyacetylenes from species in the Asteraceae. Biochem. Syst. Ecol.9:63-68.

    Google Scholar 

  • BALLARD, R. 1986. Bidens pilosacomplex (Asteraceae) in North and Central America. Am. J. Bot.73:1452-1465.

    Google Scholar 

  • BEGGS, C. J., and WELLMANN, E. 1985. Analysis of light-controlled anthocyanin formation in coleoptiles of Zea maysL.: The role of UV-B, blue, red and far-red light. Photochem. Photobiol.41:481-486.

    Google Scholar 

  • BEIRER, R. C., and OERTLI, E. H. 1983. Psoralen and other linear furanocoumarins as phytoalexins in celery. Phytochemistry22:2595-2597.

    Google Scholar 

  • BOHLMANN, F., BURKHARDT, T., and ZDERO, C. 1973. Naturally Occurring Acetylenes. Academic Press, London.

    Google Scholar 

  • BOURQUE, G., ARNASON, J. T., MADHOSINGH, C., and ORR, W. 1985. The photosensitization of the plant pathogen Fursarium culmorumby phenylheptatriyne from Bidens pilosa. Can. J. Bot.63:899-902.

    Google Scholar 

  • BRYANT, J. P., CHAPIN, F. S., III, and KLEIN, D. R. 1983. Carbon nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos40:357-368.

    Google Scholar 

  • CAMPBELL, G., LAMBERT, J. D. H., ARNASON, T., and TOWERS, G. H. N. 1982. Allelopathic properties of alpha-terthienyl and phenylheptatriyne, naturally occurring compounds from species of Asteraceae. J. Chem. Ecol.8:961-972.

    Google Scholar 

  • CHAPPEL, J., and HAHLBROCK, K. 1984. Transcription of plant defense genes in response to UV light or fungal elicitor. Nature311:76-78.

    Google Scholar 

  • DOWNUM, K. R. 1992. Tansley review No. 43 Light-activated plant defense. New Phytol.122:401-420.

    Google Scholar 

  • GEISSBERGER, P., and SEQUIN, U. 1991. Constituents of Bidens pilosaL.: Do the components found so far explain the use of this plant in traditional medicine Acta Trop.48:251-261.

    PubMed  Google Scholar 

  • GERSHENZON, J. 1984. Changes in levels of plant secondary metabolites under water and nutrient stress, pp. 273-320, inB. N. Timmermann, C. Steelink and F. A. Loewus (eds.). Recent Advances in Phytochemistry: Phytochemical Adaptations to Stress, Volume 18. Plenum Press, New York, New York.

    Google Scholar 

  • HAHLBROCK, K., and SCHEEL, D. 1989. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Mol. Biol.40:347-369.

    Google Scholar 

  • HARBORNE, J. B. 1993. The Flavanoids. Advances in Research (1988-1991). Chapman and Hall, London.

    Google Scholar 

  • HOLM, L. G., PLUCKNETT, D. L., PANCHO, J. V., and HERBERGER, J. P. 1977. The World's Worst Weeds: Distribution and Biology. University of Hawaii Press, Honolulu, pp. 185-190.

    Google Scholar 

  • HUDSON, J. B., GRAHAM, E. A., and TOWERS, G. H. N. 1986. Investigation of the antiviral action of the photoactive compound phenylheptatriyne. Photochem. Photobiol.43:27-33.

    PubMed  Google Scholar 

  • ICHIHARA, K., and NODA, M. 1977. Distribution and metabolism of polyacetylenes in safflower. Biochem. Biophys. Acta487:249-260.

    PubMed  Google Scholar 

  • KIRSZENZAFT, S. L., and FELIPPE, G. M. 1978. Effects of photoperiod and growth regulators on flowering of Bidens pilosaL. Ciencia Cult.30:357-360.

    Google Scholar 

  • LEE, D. W., and DOWNUM, K. R. 1991. The spectral distribution of biologically active solar radiation at Miami, Florida, USA. Int. J. Biometeorol.35:48-54.

    PubMed  Google Scholar 

  • LOIS, R., DIETRICH, A., HAHLBROCK, K., and SCHULZ, W. 1989. A phenylalanine ammonia-lyase gene from parsley: Structure, regulation and identification of elicitor and light responsive cisacting elements. EMBO J.8:1641-1648.

    PubMed  Google Scholar 

  • MARCHANT, Y. Y. 1987. Photodecomposition of naturally occurring biocides, pp. 168-175, inJ. R. Heitz and K. R. Downum (eds.). Light-Activated Pesticides. American Chemical Society, Washington, D.C.

    Google Scholar 

  • MEISSNER, R., NEL, P. C., and BEYERS, E. A. 1986. Allelopathic influence of Tagetes-and Bidensinfested soils on seedling growth of certain crop species. S. Afr. J. Plant Soil3:176-180.

    Google Scholar 

  • NORTON, R. A., and TOWERS, G. H. N. 1985. Synthesis of polyacetylenes in tumor callus of Bidens alba. J. Plant Physiol.120:273-283.

    Google Scholar 

  • PIRINGER, A. A., and HEINZE, P. H. 1954. Effect of light on the formation of a pigment in the tomato fruit cuticle. Plant Physiol.29:467-472.

    Google Scholar 

  • RABE, T., and VAN STUDEn, J. 1997. Antibacterial activity of South African plants used for medicinal purposes. J. Ethnopharmacol.56:81-87.

    PubMed  Google Scholar 

  • REDDY, K. N., and SINGH, M. 1992. Germination and emergence of hairy beggarticks (Bidens pilosa). Weed Sci.40:195-199.

    Google Scholar 

  • SCHULTZE-LEFERT, P., DANGL, J. L., BECKER-ANDRE, M., HAHLBROCK, K., and SCHULTZ, W. 1989. Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J.8:651-656.

    PubMed  Google Scholar 

  • SIEGELMAN, H. W., and HENDRICKS, S. B. 1957. Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Plant Physiol.32:393-398.

    Google Scholar 

  • TIETJEN, K. G., and MATERNS, U. 1983. Different response of cultured parsley cells to elicitors from two non-pathogenic strains of fungi. 2. Effects on enzyme activities. Eur. J. Biochem.131:409-413.

    PubMed  Google Scholar 

  • TOWERS, G. H. N. 1984. Interactions of light with phytochemicals in some natural and novel systems. Can. J. Bot.62:2900-2911.

    Google Scholar 

  • TOWERS, G. H. N., and HUDSON, J. B. 1987. Potentially useful antimicrobial and antiviral phototoxins from plants. Photochem. Photobiol.46:61-66.

    PubMed  Google Scholar 

  • TOWERS, G. H. N., ARNASON, T., WAT, C. K., GRAHAM, E. A., LAM, J., and MITCHELL, J. C. 1979. Phototoxic polyacetylenes and their thiophene derivatives (effects on human skin). Contact Dermatitis5:140-144.

    PubMed  Google Scholar 

  • UGARTE, C. A. 1997. Ethnopharmacology of plants used as both food and medicine in a Totonac community of Mexico. Master's thesis. Florida International University, Miami.

    Google Scholar 

  • WAT, C. K., BISWAS, R. K., GRAHAM, E. A., BOHM, L., TOWERS, G. H. N., and WAYGOOD, E. R. 1979. Ultraviolet-mediated cytotoxic activity of phenylheptatrilyne from Bidens pilosaL. J. Nat. Prod.42:103-111.

    PubMed  Google Scholar 

  • WAT, C. K., JOHNS, T., and TOWERS, G. H. N. 1980. Phototoxic and antibiotic activities of plants of the Asteraceae used in folk medicine. J. Ethnopharmacol.2:279-283.

    PubMed  Google Scholar 

  • WAT, C. K., PRASAD, S. K., GRAHAM, E. A., PARTINGTON, S., ARNASON, T., and TOWERS, G. H. N. 1981. Photosensitization of invertebrates by natural polyacetylenes. Biochem. Syst. Ecol.9:59-62.

    Google Scholar 

  • WEIR, D., SCAIANO, J. C., ARNASON, J. T., and EVANS, C. 1985. Photochemistry of the phototoxic polyacetylene phenylheptatriyne. Photochem. Photobiol.42:223-230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantonwine, E.G., Downum, K.R. Phenylheptatriyne Variation in Bidens alba Var. radiata Leaves. J Chem Ecol 27, 313–326 (2001). https://doi.org/10.1023/A:1005680422159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005680422159

Navigation