Skip to main content
Log in

Mechanical manipulation of animal cells: cell indentation

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Daily B, Elson EL, Zahalak GI (1984) Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane. Biophys. J. 45: 671-682.

    Google Scholar 

  • Dike LE, Chen CS, Mrkisch M, Tien J, Whitesides GM, Ingber DE (1999) Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. In Vitro Cell Dev. Biol. Anim. 35: 441-448.

    Google Scholar 

  • Discher DE, Mohandas N, Evans EA (1994) Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266: 1032-1035.

    Google Scholar 

  • Duszyk M, Schwab BIII, Zahalak GI, Qian H, Elson EL (1989) Cell poking: quantitative analysis of indentation of thick viscoelastic layers. Biophys. J. 55: 683-690.

    Google Scholar 

  • Eichinger L, Koeppel B, Noegel AA, Schleicher M, Schliwa M, Weijer K, Witke W, Janmey PA (1996) Mechanical perturbation elicits a phenotypic difference between Dictyostelium wild-type cells and cytoskeletal mutants. Biophys. J. 70: 1054-1060.

    Google Scholar 

  • Evans EA (1980) Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. Biophys. J. 30: 265-284.

    Google Scholar 

  • Evans EA (1983) Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys. J. 43: 27-30.

    Google Scholar 

  • Ezzell RM, Goldmann WH, Wang, N, Parasharama N, Ingber DE (1997) Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp. Cell Res. 231: 14-26.

    Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285: 1028-1032.

    Google Scholar 

  • Goldmann WH, Ezzell RM (1996) Viscoelasticity in wild type and vinculin-deficient (5.51) mouse embryonic carcinoma cells examined by atomic force microscopy and rheology. Exp. Cell Res. 226: 234-236.

    Google Scholar 

  • Goldmann WH, Ezzell RM, Adamson ED, Niggli V, Isenberg G (1996) Vinculin, talin and focal adhesions.J. Muscle Res. CellMotil. 17: 1-5.

    Google Scholar 

  • Goldmann WH, Galneder R, Ludwig M, Xu W, Adamson ED, Wang N, Ezzell RM(1998a) Differences in elasticity of vinculindeficient F9 cells measured by magnetometry and atomic force microscopy. Exp. Cell Res. 239: 235-242.

    Google Scholar 

  • Goldmann WH, Galneder R, Ludwig M, Kromm A, Ezzell RM (1998b) Differences in F9 and 5.51 cell elasticity determined by cell poking and atomic force microscopy. FEBS Lett. 424: 139-142.

    Google Scholar 

  • Goldmann WH, Alonso JL, Bojanowski K, Brangwynne C, Chen CS, Chicurel ME, Dike L, Huang S, Lee KM, Maniotis A, Mannix R, McNamee H, Meyer CJ, Naruse K, Parker KK, Plopper G, Polte T, Wang N, Yan L, Ingber DE (2000) In: Carraway KL, Carraway CAC, eds. Cytoskeleton: Signalling and Cell Regulation. Oxford: Oxford University Press, pp. 245-276. 435

    Google Scholar 

  • Hoh JH, Schoenenberger CA (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell Sci. 107: 1105-1114.

    Google Scholar 

  • Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104: 613-627.

    Google Scholar 

  • Ingber DE, Dike L, Hansen L, Karp S, Liley H, Maniotis A, McNamee H, Mooney D, Plopper G, Sims J, Wang N (1994) Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int. Rev. Cytol. 150: 173-224.

    Google Scholar 

  • Ingber DE, Prusty D, Sun Z, Betensky H, Wang N (1995) Cell shape, cytoskeletal mechanics and cell cycle control angiogenesis. J. Biomech. 28: 1471-1484.

    Google Scholar 

  • Radmacher M, Tillmann RW, Fritz M, Gaub HE (1992) From molecules to cells-imaging soft samples with the AFM. Science 257: 1900-1905.

    Google Scholar 

  • Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70: 556-567.

    Google Scholar 

  • Singhvi R, Kumar A, Lopez G, Stephanopoulos GN, Wang DIC, Whitesides GM, Ingber DE (1994) Engineering cell shape and function. Science 264: 696-698.

    Google Scholar 

  • Strey H, Peterson M, Sackmann E (1996) Measurements of erythrocyte membrane elasticity of flicker eigenmode decomposition. Biophys. J. 69: 478-488.

    Google Scholar 

  • Wang N, Ingber DE (1994) Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66: 2181-2189.

    Google Scholar 

  • Wang N, Ingber DE (1995) Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem. Cell Biol. 73: 1-9.

    Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260: 1124-1127.

    Google Scholar 

  • Zahalak GI, McConnaughey WB, Elson EL (1990) Determination of cellular mechanical properties by cell poking, with an application to leukocytes. J. Biomech. Eng. 112: 283-294.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldmann, W.H. Mechanical manipulation of animal cells: cell indentation. Biotechnology Letters 22, 431–435 (2000). https://doi.org/10.1023/A:1005679804525

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005679804525

Keywords

Navigation