Skip to main content
Log in

Evidence for a Conformational Change in Subunit III of Bovine Heart Mitochondrial Cytochrome c Oxidase1

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The role of subunit III in the function of mitochondrial cytochrome c oxidase is not clearly understood. Previous work has shown that chemical modification of subunit III with N,N′-dicyclohexylcarbodiimide (DCCD) reduced the proton-pumping efficiency of the enzyme by an unknown mechanism. In the current work, we have employed biochemical approaches to determine if a conformational change is occurring within subunit III after DCCD modification. Control and DCCD modified beef heart enzyme were subjected to limited proteolysis in nondenaturing detergent solution. Subunit III in DCCD treated enzyme was more susceptible to chymotrypsin digestion than subunit III in the control enzyme. We also labeled control and DCCD-modified enzyme with iodoacetyl—biotin, a sulfhydryl reagent, and found that subunit III of the DCCD-modified enzyme was more reactive when compared to subunit III of the control enzyme, indicating an increase in reactivity of subunit III upon DCCD binding. The cross linking of subunit III of the enzyme induced by the heterobifunctional reagent, N-succinimidyl(4-azidophenyl -1,3′-dithio)-propionate (SADP), was inhibited by DCCD modification, suggesting that DCCD binding prevents the intersubunit cross linking of subunit III. Our results suggest that DCCD modification of subunit III causes a conformational change, which most likely disrupts critical hydrogen bonds within the subunit and also those at the interface between subunits III and I in the enzyme. The conformational change induced in subunit III by covalent DCCD binding is the most likely mechanism for the previously observed inhibition of proton-pumping activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderson, S., de Bruijn, M. H., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G. (1982). J. Mol. Biol. 156, 683-718.

    Google Scholar 

  • Babcock, G. T. and Wikstrom, M. (1992). Nature (London) 356, 301-309.

    Google Scholar 

  • Bratton, M. R., Pressler, M. A., and Hosler, J. P. (1999). Bio chemistry 38, 16236-16245.

    Google Scholar 

  • Briggs, M. M. and Capaldi, R. A. (1977). Biochemistry 16, 73-77.

    Google Scholar 

  • Casey, R. P., Thelen, M., and Azzi A. (1980). J. Biol. Chem. 255, 3994-4000.

    Google Scholar 

  • Capaldi, R. A. (1990). Annu. Rev. Biochem. 59, 569-596.

    Google Scholar 

  • DiBiase, V. A. and Prochaska, L. J. (1985). Arch. Biochem. Biophys. 243, 668-667.

    Google Scholar 

  • Dreyfuss, G., Adam, S. A., and Choi, Y. D. (1984). Mol. Cell Biol. 4, 415-423.

    Google Scholar 

  • Estey, L. A. and Prochaska, L. J. (1993). Biochemistry 32, 13270-13276.

    Google Scholar 

  • Estey, L. A., Lincoln, A. J., and Prochaska, L. J. (1990). Biochemistry 29, 9714-9720.

    Google Scholar 

  • Fetter, J. R., Qian, J., Shapleigh, J., Thomas, J. W., Garcia-Horsman, A., Schmidt, E., Hosler, J., Babcock, G. T., Gennis, R. B., and Ferguson-Miller, S. (1995). Proc. Natl. Acad. Sci. USA 92, 1604-1608.

    Google Scholar 

  • Fillingame, R. H. (1975). J. Bacteriol. 124, 870-873.

    Google Scholar 

  • Fuller, S. D., Darley-Usmar, V. M., and Capaldi, R. A. (1981). Biochemistry 20, 7046-7053.

    Google Scholar 

  • Gennis, R. B. (1989). Biomembranes: Molecular Structure and Function, Springer Verlag, New York.

    Google Scholar 

  • Haltia, T., Saraste, M., and Wikstrom, M. (1991). EMBO J. 10, 2015-2021.

    Google Scholar 

  • Haltia, T., Semo, N., Arrondo, J. L. R., Goni, F. M., and Freire, E. (1994). Biochemistry 33, 9731-9740.

    Google Scholar 

  • Hoffbuhr, K. C., Davidson, E., Filiano, B. A., Davidson, M., Kennaway, N. G., and King, M. P. (2000). J. Biol. Chem. 275, 13994-14003.

    Google Scholar 

  • Hosler, J. P., Shapleigh, J. P., Mitchell, D. M., Kim, Y., Pressler, M. A., Georgiou, C., Babcock, G. T., Alben, J. O., Ferguson-Miller, S., and Gennis, R. B. (1996). Biochemistry 35, 10776-10783.

    Google Scholar 

  • Iwata, S., Ostermeier, C., Ludwig, B., and Michel, H. (1995). Nature (London) 376, 660-669.

    Google Scholar 

  • Kadenbach, B., Ungibauer, M., Jarausch, J., Buge, U., and Kuhn-Nentwig, L. (1983). Trends Biochem. Sci. 8, 398-400.

    Google Scholar 

  • Kolbe, M., Besir, H., Essen, L.O., and Oesterhelt, D. (2000). Science 288, 1390-1396.

    Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951). J. Biol. Chem. 193, 265-275.

    Google Scholar 

  • Malatesta, F. and Capaldi, R. A. (1982). Biochem. Biophys. Res. Commun. 109, 1180-1185.

    Google Scholar 

  • Mather, M. W. and Rottenberg, H. (1998). FEBS Lett. 433, 93-97.

    Google Scholar 

  • Mitchell, P. (1979). Science 206, 1148-1159.

    Google Scholar 

  • Musser, S. M., Larsen, R. W., and Chan, S. I. (1993). Biophys. J. 65, 2348-2359.

    Google Scholar 

  • Prochaska, L. J. and Fink, P. S. (1987). J. Bioenerg. Biomembr. 19, 143-166.

    Google Scholar 

  • Prochaska, L. J., Bisson R., Capaldi, R. A., Steffens, G. C. M., and Buse, G. (1981). Biochim. Biophys. Acta 637, 360-373.

    Google Scholar 

  • Puettner, I., Carafoli, E., and Malatesta, F. (1985). J. Biol. Chem. 260, 3719-3723.

    Google Scholar 

  • Richards, F. M. and Brunner, J. (1980). Ann. NY Acad. Sci. 346, 144-156

    Google Scholar 

  • Sandermann, H. (1978). Biochim. Biophys. Acta 515, 209-237.

    Google Scholar 

  • Saraste, M. (1990). Quart. Rev. Biophys. 23, 331-366.

    Google Scholar 

  • Saraste, M. (1999). Science 283, 1488-1493.

    Google Scholar 

  • Thompson, D. and Ferguson-Miller (1983). Biochemistry 22, 3178-3187.

  • Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yanono, R., and Yoshikawa, S. (1996). Science 272, 1136-1144.

    Google Scholar 

  • Wikstrom, M. and Krab, K. (1979). Biochim. Biophys. Acta 549, 177-222.

    Google Scholar 

  • Wilson, K. S. and Prochaska, L. J. (1990). Arch. Biochem. Biophys. 282, 413-420.

    Google Scholar 

  • Yonetani, T. (1967). Methods Enzymol. 10, 332-336.

    Google Scholar 

  • Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yanono, R., Inoue, N., Yao, M., Fei, M.J., Libeu, C.P., Mizushima, T., Yamaguchi, H., Tomizaki, T., and Tsukihara, T. (1998). Science 280, 1723-1729.

    Google Scholar 

  • Zhang, Y-Z., Georgevich, G., and Capaldi, R. A. (1984). Biochemistry 23, 5616-5621.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogunjimi, E.O., Pokalsky, C.N., Shroyer, L.A. et al. Evidence for a Conformational Change in Subunit III of Bovine Heart Mitochondrial Cytochrome c Oxidase1. J Bioenerg Biomembr 32, 617–626 (2000). https://doi.org/10.1023/A:1005678729157

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005678729157

Navigation