Skip to main content
Log in

Ca2+ Induces a Cyclosporin A-Insensitive Permeability Transition Pore in Isolated Potato Tuber Mitochondria Mediated by Reactive Oxygen Species

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Oxidative damage of mammalian mitochondria induced by Ca2+ and prooxidants is mediated by the attack of mitochondria-generated reactive oxygen species on membrane protein thiols promoting oxidation and cross-linkage that leads to the opening of the mitochondrial permeability transition pore (Castilho et al., 1995). In this study, we present evidence that deenergized potato tuber (Solanum tuberosum) mitochondria, which do not possess a Ca2+ uniport, undergo inner membrane permeabilization when treated with Ca2+ (>0.2 mM), as indicated by mitochondrial swelling. Similar to rat liver mitochondria, this permeabilization is enhanced by diamide, a thiol oxidant that creates a condition of oxidative stress by oxidizing pyridine nucleotides. This is inhibited by the antioxidants catalase and dithiothreitol. Potato mitochondrial membrane permeabilization is not inhibited by ADP, cyclosporin A, and ruthenium red, and is partially inhibited by Mg2+ and acidic pH, well known inhibitors of the mammalian mitochondrial permeability transition. The lack of inhibition of potato mitochondrial permeabilization by cyclosporin A is in contrast to the inhibition of the peptidylprolyl cis–trans isomerase activity, that is related to the cyclosporin A-binding protein cyclophilin. Interestingly, the monofunctional thiol reagent mersalyl induces an extensive cyclosporin A-insensitive potato mitochondrial swelling, even in the presence of lower Ca2+ concentrations (>0.01 mM). In conclusion, we have identified a cyclosporin A-insensitive permeability transition pore in isolated potato mitochondria that is induced by reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Åkerman, K. E. O. and Wikström, M. K. F. (1976). FEBS Lett. 68, 191–197.

    Article  PubMed  Google Scholar 

  • Beavis, A. D. and Vercesi, A. E. (1992). J. Biol. Chem. 267, 3079–3087.

    PubMed  Google Scholar 

  • Beavis, A. D., Brannan, R. D., and Garlid, K. D. (1985). J. Biol. Chem. 260, 13424–13433.

    PubMed  Google Scholar 

  • Bernardi, P., Vassanelli, S., Veronese, P., Colonna, R., Szabo, I., and Zoratti, M. (1992). J. Biol. Chem. 267, 2934–2939.

    PubMed  Google Scholar 

  • Beutner, G., Ruck, A., Riede, B., and Brdiczka, D. (1998). Biochim. Biophys. Acta 1368, 7–18.

    PubMed  Google Scholar 

  • Breiman, A., Fawcett, T. W., Ghirardi, M. L., and Mattoo, A. K. (1992). J. Biol. Chem. 267, 21293–21296.

    PubMed  Google Scholar 

  • Broekemeier, K. M. and Pfeiffer, D. R. (1995). Biochemistry 34, 16440–16449.

    PubMed  Google Scholar 

  • Carnieri, E. G. S., Martins, I. S., and Vercesi, A. E. (1986). Brazil. J. Med. Biol. Res. 28, 525–531.

    Google Scholar 

  • Castilho, R. F., Kowaltowski, A. J., Meinicke, A. R., Bechara, E. J. H., and Vercesi, A. E. (1995). Free Radical. Biol. Med. 18, 479–486.

    Google Scholar 

  • Castilho, R. F., Kowaltowski, A. J., and Vercesi, A. E. (1996). J. Bioenerg. Biomembr. 28, 523–529.

    PubMed  Google Scholar 

  • Chen, C. H. and Lehninger, A. L. (1973). Arch Biochem. Biophys. 157, 183–196.

    PubMed  Google Scholar 

  • Connern, C. P. and Halestrap, A. P. (1992). Biochem. J. 284, 381–385.

    PubMed  Google Scholar 

  • Crompton, M. (1999). Biochem. J. 341, 233–249.

    Article  PubMed  Google Scholar 

  • Dieter, P. and Marmé, D. (1980). Planta 150, 1–8.

    Google Scholar 

  • Dykens, J. A. (1994). J. Neurochem. 63, 584–591.

    PubMed  Google Scholar 

  • Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., and Schmid, F. X. (1989). Nature (London) 337, 476–478.

    Google Scholar 

  • Garlid, K. D. and Beavis, A. D. (1985). J. Biol. Chem. 260, 13434–13441.

    PubMed  Google Scholar 

  • Grijalba, M. T., Vercesi, A. E., and Schreier, S. (1999). Biochemistry 38, 13279–13287.

    PubMed  Google Scholar 

  • Gunter, T. E. and Pfeiffer, D. R. (1990). Amer. J. Physiol. 258, C755-C786.

    PubMed  Google Scholar 

  • Halestrap, A. P. (1991). Biochem. J. 278, 715–719.

    PubMed  Google Scholar 

  • Halestrap, A. P., Connern, C. P., Griffiths, E. J., and Kerr, P. M. (1997). Mol. Cell. Biochem. 174, 167–172.

    PubMed  Google Scholar 

  • Jung, D. W., Bradshaw, P. C., and Pfeiffer, D. R. (1997). J. Biol. Chem. 272, 21104–21112.

    Article  PubMed  Google Scholar 

  • Kosower, N. S., Kosower, E. M., Wertheim, B., and Correa, W. S. (1969). Biochem. Biophys. Res. Commun. 37, 593–596.

    PubMed  Google Scholar 

  • Kowaltowski, A. J. and Vercesi, A. E. (1999). Free Radical Biol. Med. 26, 463–471.

    Google Scholar 

  • Kowaltowski, A. J., Naia-da-Silva, E. S., Castilho, R. F., and Vercesi, A. E. (1998). Arch. Biochem. Biophys. 359, 77–81.

    PubMed  Google Scholar 

  • Lemasters, J. J. (1998). Gastroenterology 115, 783–786.

    PubMed  Google Scholar 

  • Martins, I. S. and Vercesi, A. E. (1985). Biochem. Biophys. Res. Commun. 129, 943–948.

    PubMed  Google Scholar 

  • Mattoo, A. K. (1998). Methods Enzymol. 290, 84–100.

    PubMed  Google Scholar 

  • Moore, A. L. and Åkerman, K. E. O. (1984). Plant Cell Environ. 7, 423–429.

    Google Scholar 

  • Nicolli, A., Basso, E., Petronilli, V., Wenger, R. M., and Bernardi, P. (1996). J. Biol. Chem. 271, 2185–2192.

    Article  PubMed  Google Scholar 

  • Novgorodov, S. A., Gudz, T. I., Brierley, G. P., and Pfeiffer, D. R. (1994). Arch. Biochem. Biophys. 311, 219–228.

    Article  PubMed  Google Scholar 

  • Scarpa, A. (1979). Methods Enzymol. 56, 301–338.

    PubMed  Google Scholar 

  • Silva, M. P. A., Carnieri, E. G. S., and Vercesi, A. E. (1992). Plant Physiol. 98, 452–457.

    Google Scholar 

  • Sluse, F. E. and Jarmuszkiewicz, W. (1998). Brazil. J. Med. Biol. Res. 31, 733–747.

    Google Scholar 

  • Teixeira, B. M., Kowaltowski, A. J., Castilho, R. F., and Vercesi, A. E. (1999). Biosci. Rep. 19, 525–533.

    PubMed  Google Scholar 

  • Valle, V. G. R., Fagian, M. M., Parentoni, L. S., Meinicke, A. R., and Vercesi, A. E. (1993). Arch. Biochem. Biophys. 307, 1–7.

    PubMed  Google Scholar 

  • Vercesi, A. E., Ferraz, V. L., Macedo, D. V., and Fiskum, G. (1988). Biochem. Biophys. Res. Commun. 154, 934–941.

    PubMed  Google Scholar 

  • Vercesi, A. E., Martins, I. S., Silva, M. A. P., Leite, H. M. F., Cuccovia, I. M., and Chaimovich, H. (1995). Nature (London) 375, 24.

    Google Scholar 

  • Zoratti, M. and Szabò, I. (1995). Biochem. Biophys. Acta 1241, 139–176.

    PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortes, F., Castilho, R.F., Catisti, R. et al. Ca2+ Induces a Cyclosporin A-Insensitive Permeability Transition Pore in Isolated Potato Tuber Mitochondria Mediated by Reactive Oxygen Species. J Bioenerg Biomembr 33, 43–51 (2001). https://doi.org/10.1023/A:1005672623709

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005672623709

Navigation