Journal of Bioenergetics and Biomembranes

, Volume 32, Issue 6, pp 571–583

Modulation of the Voltage-Dependent Anion Channel (VDAC) by Glutamate1

  • Dan Gincel
  • Shai D. Silberberg
  • Varda Shoshan-Barmatz
Article

Abstract

The voltage-dependent anion channel (VDAC), also known as mitochondrial porin, is a large channel permeable to anions, cations, ATP, and other metabolites. VDAC was purified from sheep brain synaptosomes or rat liver mitochondria using a reactive red-agarose column, in addition to the hydroxyapatitate column. The red-agarose column allowed further purification (over 98%), concentration of the protein over ten-fold, decreasing Triton X-100 concentration, and/or replacing Triton X-100 with other detergents, such as Nonidet P-40 or octylglucoside. This purified VDAC reconstituted into planar-lipid bilayer, had a unitary maximal conductance of 3.7 ± 0.1 nS in 1 M NaCl, at 10 mV and was permeable to both large cations and anions. In the maximal conducting state, the permeability ratios for Na+, acetylcholine+, dopamine,+ and glutamate, relative to Cl, were estimated to be 0.73, 0.6, 0.44, and 0.4, respectively. In contrast, in the subconducting state, glutamate was impermeable, while the relative permeability to acetylcholine+ increased and to dopamine+ remained unchanged. At the high concentrations (0.1–0.5 M) used in the permeability experiments, glutamate eliminated the bell shape of the voltage dependence of VDAC channel conductance. Glutamate at concentrations of 1 to 20 mM, in the presence of 1 M NaCl, was found to modulate the VDAC channel activity. In single-channel experiments, at low voltages (±10 mV), glutamate induced rapid fluctuations of the channel between the fully open state and long-lived low-conducting states or short-lived closed state. Glutamate modification of the channel activity, at low voltages, is dependent on voltage, requiring short-time (20–60 sec) exposure of the channel to high membrane potentials. The effect of glutamate is specific, since it was observed in the presence of 1 M NaCl and it was not obtained with aspartate or GABA. These results suggest that VDAC possesses a specific glutamate-binding site that modulates its activity.

VDAC Porin ion channels ion permeability glutamate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Benz, R. (1994). Biochim. Biophys. Acta 1197, 167-196.Google Scholar
  2. Benz, R., Kottke, M., and Brdiczka, D. (1990). Biochim.Biophys. Acta 1022, 311-318.Google Scholar
  3. Babel, D., Walter, G., Gotz, H., Thinnes, E P., Jurgens, L., Konig, U., and Hilschmann, N. (1991). Biol. Chem. Hoppe-Seyler 372, 1027-1034.Google Scholar
  4. Basford, R. E. (1967). Methods Enzymol. 10, 96-101.Google Scholar
  5. Bathori, G., Parolini G., Tombola, I., Szabo, F, Messina, I., Oliva, A., De Pinto, M., Lisanti, V., Sargiacomo M., and Zoratti, M. (1999). J. BioI. Chem. 274, 29607-29612.Google Scholar
  6. Blachly-Dyson, E., Peng, S., Colombini, M. and Forte, M. (1990). Science, 247, 1233-1236.Google Scholar
  7. Colombini, M. (1994). Current Topics Membr. 42, 73-101.Google Scholar
  8. Colombini, M., Yeung, C L., Tung, J., and Koeing, T. (1987). Biochim. Biophys. Acta 905, 279-286.Google Scholar
  9. de Pinto, V., Prezioso, G., and Palmieri, E (1987). Biochim. Biophys. Acta 905, 499-502.Google Scholar
  10. Dermietzel, R., Hwang, T. K., Buettner, R., Hofer, A., Dotzler, E., Kremer, M., Deutzmann, R., Thinnes, E P., Fishman, G., Spray, D., and Siemen, D. (1994). Proc. Natl. Acad. Sci. USA 91, 499-503.Google Scholar
  11. Floker, H., Thinnes, E P., Winkelbach, H., Stadtmuller, U., Paetzold, G., Morys-Wortmann, C, Hess, D., Sternbach, H., Zimmermann, B., Kaufmann-Kolle, P., Heiden, M., Karabions, A., Reymann, S., Lalk, V. E., and Hilschmann, N. (1994). Biol. Chem. Hoppe-Seyler 375, 513-520.Google Scholar
  12. Gincel, D., Zaid, H., and Shoshan-Barmatz, V. (2000). J. BioI. Chem., manuscript submitted.Google Scholar
  13. Guibert, B., Dermietzel, R., and Sieman, D. (1998). Intern. J. Biochem. Cell. Biol. 30, 379-391.Google Scholar
  14. Guo, X. W. and Mannella, CA. (1993). Biophys. J. 64, 545-549.Google Scholar
  15. Hodge, T. and Colombini, M. (1997). J. Membr. Biol. 157 , 271-279.Google Scholar
  16. Holden, M. J. and Colombini, M. (1993). Biochim. Biophys. Acta 1144, 396-402.Google Scholar
  17. Horn, A., Reymann, S., and Thinnes, F. P. (1998). Mol. Genet. Metab. 63, 239-242.Google Scholar
  18. Huntter, W. B., Schiebler, W., Greengard, P., and de Camilli, P. (1983). Cell. Biol. 96, 1374-1388.Google Scholar
  19. Kaplan, R. S. and Pedersen, P. L. (1985). Anal. Biochem. 150 , 97-104.Google Scholar
  20. Krasitnikov, O. V., Carneiro, C. M. M., Yuldasheva, L. N., Camposde-Carvalho, A. C., and Nogueira, R. A., (1996). Brazil. J. Med. Biol. Res. 29, 1691-1697.Google Scholar
  21. Laemmli, U. K. (1970). Nature London 227, 680-685.Google Scholar
  22. Lee, A., Zizi, M., and Colombini, M. (1994). J. Biol. Chem. 269, 30974-30980.Google Scholar
  23. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951). J. Biol. Chem. 193, 265-275.Google Scholar
  24. Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Cell 94, 481-490.Google Scholar
  25. Mangan, P. S. and Columbini, M. (1987). Proc. Natl. Acad. Sci. USA 84, 4896-4900.Google Scholar
  26. Mannella, C. A. (1997). J. Bioenerg. Biomembr. 29, 525-531.Google Scholar
  27. Mannella, C. A., Forte, M., and Colombini, M. (1992). J. Bioenerg. Biomembr. 24, 7-19.Google Scholar
  28. Reymann, S., Flarke, H., Heiden, M., Jakob, C., Stadtmuller, U., Steinacker, P., Lalk, V. E., Pardowitz, I., and Thinnes, F. R. (1995). Biochem. Mol. Med. 54 Google Scholar
  29. Reumann, S., Maier, E., Heldt, H. W., and Benz, R. (1998). Eur. J. Biochem. 251, 359-366.Google Scholar
  30. Rostovtsera, T. and Bezrukov, S. M. (1998). Biophys. J. 74 , 2365-2373.Google Scholar
  31. Rostovtseva, T. and Colombini, M. (1996). Biophys. J. 72 , 1954-1962.Google Scholar
  32. Rostovtseva, T. and Colombini, M. (1997). J. BioI. Chem. 271 , 28006-28008.Google Scholar
  33. Shafir, I., Feng, W., and Shoshan-Barmatz, V. (1998a). Eur. J.Biochem. 253, 627-636.Google Scholar
  34. Shafir, I., Feng, W., and Shoshan-Barmatz, V. (1998b). J. Bioenerg. Biomembr. 30, 499-510.Google Scholar
  35. Shoshan-Barmatz, V., Hadad, N., Feng, W., Shafir, I., Orr, I., Varsanyi, M., and Heitmeyer, M. G. (1996). FEBS Lett. 386, 205-210.Google Scholar
  36. Siadat, S., Reymann, S., Horn, A., and Thinnes, F. P. (1998). Mol. Genet. Metab. 65, 246-249.Google Scholar
  37. Towbin, H., Staehelin, T., and Gordon, J. (1979). Proc. Natl. Acad. Sci. USA 76, 4350-4354.Google Scholar
  38. Zizi, M., Forte, M., Blachly-Dyson, E., and Colombini, M. (1994). J. BioI. Chem. 269, 1614-1616.Google Scholar
  39. Zizi, M., Byrd, C., Boxus, R., and Colombini, M. (1998). Biophys. J. 75, 704-713.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Dan Gincel
    • 1
  • Shai D. Silberberg
    • 1
  • Varda Shoshan-Barmatz
    • 1
  1. 1.Department of Life Sciences and The Zlotowski Center for Neuro-scienceBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations