Skip to main content
Log in

Enhancement of plasmid stability and enzymatic expression by immobilising recombinant Saccharomyces cerevisiae

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Immobilisation of cells in a calcium alginate gel improved plasmid stability (up to 50%) and enzymatic expression (up to 57%) of a recombinant Saccharomyces cerevisiaeover-expressing the homologous gene EXG1. The rate of segregational loss in the free cells was 14-fold higher than that of the immobilised cells. Recombinant protein synthesis requires reduced cofactors, which affect the redox balance of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbotin JN (1994) Immobilization of recombinant bacteria: A strategy to improve plasmid stability. Ann. New York Acad. Sci. 721: 303-309.

    Google Scholar 

  • Bruinenberg PM, van Dijken JP, Scheffers WA (1983) A theoretical analysis of NAD(P)H production and consumption in yeasts. J. Gen. Microbiol. 129: 953-964.

    Google Scholar 

  • De Taxis du Poët P, Arcand Y, Bernier R, Barbotin JN, Thomas D (1987) Plasmid stability in immobilized and free recombinant E. colipM105(KK223-200): Importance of oxygen diffusion, growth rate, and plasmid copy number. Appl. Environ. Microbiol. 53: 1548-1555.

    Google Scholar 

  • Kumar PKR, Maschke HE, Friehs K, Schuegerl K (1991) Strategies for improving plasmid stability in genetically modified bacteria in bioreactors. Trends Biotechnol. 9: 279-284.

    Google Scholar 

  • Meinander N, Zacchi G, Hahn-Hägerdal B (1996) A heterologous reductase affects the redox balance of Saccharomyces cerevisiae. Microbiology 142: 165-172.

    Google Scholar 

  • Nombela C, Molina M, Cenamor R, Sánchez M (1988) Yeast β-glucanases: a complex system of secreted enzymes. Microbiol. Sci. 5: 328-332.

    Google Scholar 

  • O'Kennedy R, Houghton CJ, Patching JW (1995) Yeast β-glucanases: a complex system of secreted enzymes. Appl. Microbiol. Biotechnol. 44: 126-132.

    Google Scholar 

  • Ramírez M, Hernández LM, Larriba G (1989) A similar protein portion for two exoglucanases secreted by S. cerevisiae. Arch. Microbiol. 151: 391-398.

    Google Scholar 

  • Roca E, Meinander N, Hahn-Hägerdal B (1996) Xylitol production by immobilized recombinant Saccharomyces cerevisiaein a continuous packed-bed bioreactor. Biotechnol. Bioeng. 51: 317-326.

    Google Scholar 

  • Sherman F, Fink G, Hicks JB (1983) Methods in Yeast Genetics. A Laboratory Manual. Cold Spring Harbour: Cold Spring Harbour Laboratory Press.

    Google Scholar 

  • Tsai PS, Nageli M, Bailey JE (1996) Effect of Vitreoscilla hemoglobindosage on microaerobic Escherichia colicarbon and energy metabolism. Biotechnol. Bioeng. 49: 139-150

    Google Scholar 

  • Verduyn C, Postma E, Scheffers WA, van Dijken JP (1992) Effect of benzoic acid on metabolic fluxes in yeast: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501-517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lú Chau, T., Guillán, A., Roca, E. et al. Enhancement of plasmid stability and enzymatic expression by immobilising recombinant Saccharomyces cerevisiae. Biotechnology Letters 22, 1247–1250 (2000). https://doi.org/10.1023/A:1005669618337

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005669618337

Navigation