Climatic Change

, Volume 46, Issue 1–2, pp 1–28 | Cite as

Climate Change Policy Targets and the Role of Technological Change

  • Marco A. Janssen
  • Bert de Vries


In this paper, we present results of simulationexperiments with the TIME-model on the issue ofmitigation strategies with regard to greenhouse gases.The TIME-model is an integrated system dynamics worldenergy model that takes into account the fact that the systemhas an inbuilt inertia and endogenouslearning-by-doing dynamics, besides the more commonelements of price-induced demand response and fuelsubstitution. First, we present four scenarios tohighlight the importance of assumptions on innovationsin energy technology in assessing the extent to whichCO2 emissions have to be reduced. The inertia ofthe energy system seems to make a rise ofCO2 emissions in the short term almostunavoidable. It is concluded that for the populationand economic growth assumptions of the IPCC IS92ascenario, only a combination of supply- anddemand-side oriented technological innovations incombination with policy measures can bring the targetof CO2-concentration stabilization at 550 ppmv bythe year 2100 within reach. This will probably beassociated with a temporary increase in the overallenergy expenditures in the world economy. Postponingthe policy measures will be more disadvantageous,and less innovation in energy technology willhappen.


Climate Change System Dynamic Economic Growth Temporary Increase Integrate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AGGG: 1990, ‘Targets and Indicators of Climate Change’, Rijsberman and Swart (eds.), Report of Working Group II of the Advisory Group on Greenhouse Gases (AGGG), Stockholm Environmental Institute, Stockholm, Sweden.Google Scholar
  2. Alcamo, J. and Kreileman, E.: 1996, ‘Emission Scenarios and Global Climate Protection’, Global Environ. Change 6, 305-334.Google Scholar
  3. Alcamo, J., Bouwman, A., Edmonds, J., Grübler, A., Morita, T., and Sugandhy, A.: 1995, ‘An Evaluation of the IPCC IS92 Emission Scenarios’, in IPCC (Intergovernmental Panel on Climate Change), Climate Change 1994, Cambridge University Press, Cambridge, U.K., Chapter 6.Google Scholar
  4. Arrow, K. J., Cline, W. R., Maler, K. G., Monasinghe, M., Squitieri, R., and Stiglitz, J. E.: 1996, ‘Intertemporal Equity, Discounting, and Economic Efficiency’, in IPCC (Intergovernmental Panel on Climate Change), Climate Change 1995: Economic and Social Dimensions of Climate Change, Cambridge University Press, Cambridge, U.K., pp. 125-144.Google Scholar
  5. Azar, C. and Rodhe, H.: 1997, ‘Targets for Stabilization of Atmospheric CO2’, Science 276, 1818-1819.Google Scholar
  6. Berk, M. M. and Janssen, M. A.: 1997, ‘The Interactive Scenario Scanner: A Tool to Support the Dialogue between Science and Policy on Scenario Development’, RIVM Report No. 481508005, Bilthoven, the Netherlands.Google Scholar
  7. Bollen, J. C., Toet, A. M. C, de Vries, H. J. M., and van den Wijngaart, R. A.: 1995, ‘Modelling Regional Energy Use for Evaluating Global Climate Scenarios’, RIVM Report No. 481507010, Bilthoven, the Netherlands.Google Scholar
  8. Chakravorty, U., Roumasset, J., and Tse, K.: 1997, ‘Endogenous Substitution among Energy Resources and Global Warming’, J. Polit. Econ. 105, 1201-1234.Google Scholar
  9. Cline, W. R.: 1992, The Economics of Global Warming, Institute for International Economics, Washington, U.S.A.Google Scholar
  10. Davidson, P.: 1988, A Dynamic Petroleum Life-Cycle Model for the United States 1870-2050, MIT Sloan School of Management, Cambridge, MA.Google Scholar
  11. Den Elzen, M. G. J., Beusen, A. H.W., and Rotmans, J.: 1997, ‘An Integrated Modeling Approach to Global Carbon and Nitrogen Cycles: Balancing their Budgets’, Global Biogeochem. Cycles 11, 191-215.Google Scholar
  12. De Vries, H. J. M. and Van Den Wijngaart, R.: 1995, ‘The Targets/IMage Energy Model (TIME)’, GLOBO Report Series No. 16, RIVM, Bilthoven, the Netherlands.Google Scholar
  13. De Vries, H. J. M. and Janssen, M. A.: 1996, ‘Global Energy Futures: An Integrated Perspective with the TIME Model’, GLOBO Report Series No. 18, RIVM, Bilthoven, the Netherlands.Google Scholar
  14. De Vries, H. J. M., Bollen, J. C., Den Elzen, M. G. J., Gielen, A., Janssen, M. A., Kreileman, G. J. J., and Olivier, J. G. J.: 1998, ‘IMAGE-Based Scenarios of Greenhouse-Gas Emissions for the Special Report on Emissions Scenarios (SRES)’, GLOBO Report Series No. 20, RIVM, Bilthoven, the Netherlands.Google Scholar
  15. De Vries, H. J. M., Janssen, M. A., and Beusen, A.: 1999, ‘Perspectives on Global Energy Futures-Simulations with the TIME Model’, Energy Pol. 27, 477-494.Google Scholar
  16. Grubb, M.: 1997, ‘Technologies, Energy Systems, and the Timing of CO2 Emissions Abatement: An Overview of Economic Issues’, Energy Pol. 25, 159-172.Google Scholar
  17. Janssen, M. A.: 1998, Modelling Global Change: The Art of Integrated Assessment Modelling, Edward Elgar Publishing, Cheltenham U.K./Northampton, MA, U.S.A.Google Scholar
  18. Kassler: 1995, ‘Energy for Development’, Shell Selected Paper, Shell.Google Scholar
  19. Lashof, D. A. and Ahuja, D. R.: 1990, ‘Relative Global Warming Potentials of Greenhouse Effect Emissions’, Nature 344, 529-531.Google Scholar
  20. Messner, S.: 1997, ‘Endogenized Technological Learning in an Energy Systems Model’, J. Evol. Econ. 7, 291-313.Google Scholar
  21. Naill, R.: 1977, Managing the Energy Transition-A Systems Dynamics Search for Alternatives to Oil and Gas, Ballinger, Cambridge, MA.Google Scholar
  22. Nordhaus, W. D.: 1994, Managing the Global Commons: The Economics of Climate Change, MIT Press, Cambridge, MA, U.S.A.Google Scholar
  23. Repetto, R. and Austin, D.: 1997, The Costs of Climate Protection: A Guide for the Perplexed, World Resource Institute, Washington, D.C., U.S.A.Google Scholar
  24. Rotmans, J. and De Vries, H. J. M. (eds.): 1997, Perspectives on Global Change: The TARGETS Approach, Cambridge University Press, Cambridge, U.K.Google Scholar
  25. Schneider, S. H. and Goulder, L. H.: 1997, ‘Achieving Low-Cost Emissions Targets’, Nature 389, 13-14.Google Scholar
  26. Sterman, J. D.: 1981, ‘The Energy Transition and the Economy: A System Dynamics Approach' (2 Vols.), MIT Alfred P. Sloan School of Management.Google Scholar
  27. United Nations (UN): 1992, ‘Framework Convention on Climate Change’, United Nations, New York.Google Scholar
  28. Wigley, T. M. L., Richels, R., and Edmonds, J. A.: 1996, ‘Economic and Environmental Choices in the Stabilization of Atmospheric CO2 Concentrations’, Nature 379, 240-243.Google Scholar
  29. Williams, R. H.: 1995, Variants of a Low CO 2 -Emitting Energy Supply System (Less) for the World, PNL-10851, Pacific Northwest Laboratories, Richland, WA, U.S.A.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Marco A. Janssen
    • 1
  • Bert de Vries
    • 1
  1. 1.Bureau for Environmental Assessment (MNV)National Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands

Personalised recommendations