Climatic Change

, Volume 46, Issue 3, pp 289–303 | Cite as

On the Response of the Greenland Ice Sheet to Greenhouse Climate Change

  • Ralf Greve


Numerical computations are performed with the three-dimensional polythermal ice-sheet model SICOPOLIS in order to investigate the possible impact of a greenhouse-gas-induced climate change on the Greenland ice sheet. The assumed increase of the mean annual air temperature above the ice covers a range from ΔT = 1°C to 12°C, and several parameterizations for the snowfall and the surface melting are considered. The simulated shrinking of the ice sheet is a smooth function of the temperature rise, indications for the existence of critical thresholds of the climate input are not found. Within 1000 model years, the ice-volume decrease is limited to 10% of the present volume for ΔT ≤ 3°C, whereas the most extreme scenario, ΔT = 12°C, leads to an almost entire disintegration, which corresponds to a sea-level equivalent of 7 m. The different snowfall and melting parameterizations yield an uncertainty range of up to 20% of the present ice volume after 1000 model years.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bolzan, J.F. and Strobel, M.: 1994, ‘Accumulation-rate variations around Summit, Greenland’, Journal of Glaciology 40(134), 56-66.Google Scholar
  2. Braithwaite, R.J.: 1995, ‘Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling’, Journal of Glaciology 41(137), 153-160.Google Scholar
  3. Braithwaite, R.J. and Olesen, O.B.: 1989, ‘Calculation of glacier ablation from air temperature, West Greenland’, in J. Oerlemans (ed.), Glacier fluctuations and climatic change, Kluwer, Dordrecht, pp. 219-233.Google Scholar
  4. Calov, R. and Hutter, K.: 1996, ‘The thermomechanical response of the Greenland ice sheet to various climate scenarios’, Climate Dynamics 12, 243-260.Google Scholar
  5. Calov, R. and Marsiat, I.: 1998, ‘Simulations of the northern hemisphere through the last glacial-interglacial cycle with a vertically integrated and a 3-d thermomechanical ice sheet model coupled to a climate model’, Annals of Glaciology 27, 169-176.Google Scholar
  6. Clarke, G.K.C., Nitsan, U., and Paterson, W.S.B.: 1977, ‘Strain heating and creep instability in glaciers and ice sheets’, Reviews of Geophysics and Space Physics 15(2), 235-247.Google Scholar
  7. De Wolde, J.R., Huybrechts, P., Oerlemans, J., and van de Wal, R.S.W.: 1997, ‘Projections of global mean sea-level rise calculated with a 2D energy-balance climate model and dynamic ice sheet models’, Tellus 49A, 486-502.Google Scholar
  8. Fabré, A., Letréguilly, A., Ritz, C., and Mangeney, A.: 1995, ‘Greenland under changing climates: sensitivity experiments with a new three-dimensional ice sheet model’, Annals of Glaciology 21, 1-7.Google Scholar
  9. Fowler, A.C. and Larson, D.A.: 1978, ‘On the flow of polythermal glaciers. I. Model and preliminary analysis’, Proceedings of the Royal Society London A-363, 217-242.Google Scholar
  10. Greve, R.: 1997a: ‘A continuum-mechanical formulation for shallow polythermal ice sheets’, Philosophical Transactions of the Royal Society London A-355(1726), 921-974.Google Scholar
  11. Greve, R.: 1997b, ‘Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to steady-state and transient climate scenarios’, Journal of Climate 10(5), 901-918.Google Scholar
  12. Greve, R.: 1997c, ‘Large-scale ice-sheet modelling as a means of dating deep ice cores in Greenland’, Journal of Glaciology 43(144), 307-310; Erratum 43(145), 597-600.Google Scholar
  13. Greve, R. and MacAyeal, D.R.: 1996, ‘Dynamic/thermodynamic simulations of Laurentide ice sheet instability’, Annals of Glaciology 23, 328-335.Google Scholar
  14. Greve, R., Weis, M., and Hutter, K.: 1998, ‘Palaeoclimatic evolution and present conditions of the Greenland ice sheet in the vicinity of Summit: An approach by large-scale modelling’, Palaeoclimates 2(2-3), 133-161.Google Scholar
  15. Heinrich, H.: 1988, ‘Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130 000 years’, Quaternary Research 29, 142-152.Google Scholar
  16. Hutter, K.: 1982, ‘A mathematical model of polythermal glaciers and ice sheets’, Journal of Geophysical and Astrophysical Fluid Dynamics 21, 201-224.Google Scholar
  17. Hutter, K.: 1993, ‘Thermo-mechanically coupled ice sheet response. Cold, polythermal, temperate’, Journal of Glaciology 39(131), 65-86.Google Scholar
  18. Huybrechts, P.: 1994, ‘The present evolution of the Greenland ice sheet: an assessment by modelling’, Global and Planetary Change 9, 39-51.Google Scholar
  19. Huybrechts, P., Letr´eguilly, A., and Reeh, N.: 1991, ‘The Greenland ice sheet and greenhouse warming’, Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section) 89, 399-412.Google Scholar
  20. IPCC, 1996, Climate Change 1995: The Science of Climate Change, Cambridge University Press, Cambridge.Google Scholar
  21. Johnsen, S.J., Dahl-Jensen, D., Dansgaard, W., and Gundestrup, N.: 1995, ‘Greenland palaeotemperatures derived from GRIP borehole temperature and ice core isotope profiles’, Tellus 47B, 624-629.Google Scholar
  22. Kapsner, W.R., Alley, R.B., Shuman, C.A., Anandakrishnan, S. and Grootes, P.M.: 1995, ‘Dominant influence of atmospheric circulation on snow accumulation in greenland over the past 18 000 years’, Nature 373, 52-54.Google Scholar
  23. Le Meur, E. and Huybrechts, P.: 1996, ‘A comparison of different ways of dealing with isostasy: examples from modelling the Antarctic ice sheet during the last glacial cycle, Annals of Glaciology 23, 309-317.Google Scholar
  24. Letréguilly, A., Huybrechts, P., and Reeh, N.: 1991, ‘Steady-state characteristics of the Greenland ice sheet under different climates’, Journal of Glaciology 37(125), 149-157.Google Scholar
  25. MacAyeal, D.R.: 1992, ‘Irregular oscillations of the West Antarctic ice sheet’, Nature 359, 29-32.Google Scholar
  26. Marsiat, I.: 1994, ‘Simulation of the northern hemisphere continental ice sheets over the last glacial-interglacial cycle: Experiments with a latitude-longitude vertically integrated ice sheet model coupled to a zonally averaged climate model’, Palaeoclimates 1, 59-98.Google Scholar
  27. Ohmura, A.: 1987, ‘New temperature distribution maps for Greenland’, Zeitschrift fr Gletscherkunde und Glazialgeologie 23, 1-45.Google Scholar
  28. Ohmura, A. and Reeh, N.: 1991, ‘New precipitation and accumulation maps for Greenland’, Journal of Glaciology 37, 140-148.Google Scholar
  29. Ohmura, A., Wild, M., and Bengtsson, L.: 1996, ‘Present and future mass balance of the ice sheets simulated with GCM’, Annals of Glaciology 23, 187-193.Google Scholar
  30. Reeh, N.: 1991, ‘Parameterization of melt rate and surface temperature on the Greenland ice sheet’, Polarforschung 59(3), 113-128.Google Scholar
  31. Ritz, C.: 1997, ‘EISMINT intercomparison experiment. Comparison of existing Greenland models. Unpublished manuscript, Laboratoire de Glaciologie et de G´eophysique de l'Environnement, Saint Martin d'H'eres, France. [Available online from ftp anonymous, directory /pub/EISMINT-INTERCOMP/GREENLAND.]Google Scholar
  32. Schönwiese, C.-D.: 1992, Klima im Wandel. Tatsachen, Irrtümer, Risiken, Deutsche Verlags-Anstalt, Stuttgart, Germany.Google Scholar
  33. Thomas, R.H.: 1979, ‘The dynamics of marine ice sheets. Journal of Glaciology 24(90), 167-177.Google Scholar
  34. Van de Wal, R.S.W. and Oerlemans, J.: 1997, ‘Modelling the short-term response of the Greenland ice sheet to global warming’, Climate Dynamics 13, 733-744.Google Scholar
  35. Wilhelms, F.: 1996, ‘Leitfähigkeits-und Dichtemessung an Eisbohrkernen’, Berichte zur Polarforschung 191, 224 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Ralf Greve
    • 1
  1. 1.Institut für Mechanik IIITechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations