Skip to main content
Log in

Transformation of 2,4,6-trinitrotoluene by white rot fungus Irpex lacteus

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Up to 200 mg 2,4,6-trinitrotoluene (TNT) l−1 was removed within 12 h after adding it to a 5-day old culture of Irpex lacteus. The initial formation of hydroxylamino-dinitrotoluenes (2- and 4-OHAmDNT) from TNT was detected, followed by their successive transformation to aminodinitrotoluenes (2- and 4-AmDNT). Transformation of TNT to AmDNT via OHAmDNT was fast, but the next step was slow and seemed to be a rate-limiting step in TNT degradation. OHAmDNT isomers were also rapidly transformed by an in vitro enzymatic system. Both the mycelium and extracellular enzymes of I. lacteus were required for the TNT degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armenante PM, Pal N, Lewandowski G (1994) Role of mycelium and extracellular protein in the biodegradation of 2,4,6–trichlorophenol by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 60: 1711–1718.

    Google Scholar 

  • Boopathy R, Wilson M, Kulpa CF (1993) Anaerobic removal of 2,4,6–trinitrotoluene (TNT) under different electron accepting conditions: laboratory study. Water Environ. Res. 65: 271–275.

    Google Scholar 

  • Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel K, Gemsa D, von Löw E (1998) Mass balance studies with 14C-labeled 2,4,6–trinitrotoluene (TNT) mediated by an anaerobic Desulfovibrio species and an aerobic Serratia species. Curr. Microbiol. 37: 380–386.

    Google Scholar 

  • Fernando T, Bumpus JH, Aust SD (1990) Biodegradation of TNT (2,4,6–trinitrotoluene) by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56: 1667–1671.

    Google Scholar 

  • French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6–trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase.Appl. Environ. Microbiol. 64: 2864–2868.

    Google Scholar 

  • Haïdour A, Ramos JL (1996) Identification of products resulting of 2,4,6–trinitrotoluene, 2,4–dinitrotoluene, and 2,6–dinitrotoluene by Pseudomonas sp. Environ. Sci. Technol. 30: 2365–2370.

    Google Scholar 

  • Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (1999) Biotransformation of 2,4,6–trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl. Environ. Microbiol. 65: 2977–2986.

    Google Scholar 

  • Honeycutt ME, Jarvis AS, McFarland VA (1996) Cytotoxicity and mutagenicity of 2,4,6–trinitrotoluene and its metabolites. Ecotoxicol. Environ. Safety 35: 282–287.

    Google Scholar 

  • Lewis TA, Ederer MM, Crawford RL, Crawford DL (1997) Microbial transformation of 2,4,6–trinitrotoluene. J. Ind. Microbiol. Biotechol. 18: 89–96.

    Google Scholar 

  • McFarlan S (1999) 2,4,6–Trinitrotoluene pathway map. http://www.labmed.umn.edu/umbbd/tnt/tnt_map.html

  • Michels J, Gottschalk G (1994) Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylaminodinitrotoluene, an early intermediate in the degradation of 2,4,6–trinitrotoluene. Appl. Environ. Microbiol. 60: 187–194.

    Google Scholar 

  • Michels J, Gottschalk G (1995) Pathway of 2,4,6–trinitrotoluene (TNT) degradation by Phanerochaete chrysosporium. In: Spain J, ed. Biodegradation of Nitroaromatic Compounds. New York: Plenum Press, pp. 135–149.

    Google Scholar 

  • Montpas S, Samson J, Langlois É, Lei J, Piché Y, Chênevert R (1997) Degradation of 2,4,6–trinitrotoluene by Serratia marcescens. Biotechnol. Lett. 19: 291–294.

    Google Scholar 

  • Oh KH, Kim YJ (1998) Degradation of explosive 2,4,6–trinitrotoluene by s-triazine degrading bacterium isolated from contaminated soil. Bull. Environ. Contam. Toxicol. 61: 702–708.

    Google Scholar 

  • Pasti-Grigsby MB, Lewis TA, Crawford DL, Crawford RL (1996) Screening for fungi intensively mineralizing 2,4,6–trinitrotoluene. Appl. Microbiol. Biotechnol. 47: 452–457.

    Google Scholar 

  • Shelley MD, Autenrieth RL, Wild JR, Dale BE (1996) Thermodynamic analysis of trinitrotoluene biodegradation and mineralization pathways. Biotechnol. Bioeng. 50: 198–205.

    Google Scholar 

  • Song HG (1999) Comparison of pyrene biodegradation by white rot fungi. World J. Microbiol. Biotechnol. 15: 669–672.

    Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol. 49: 523–525.

    Google Scholar 

  • Spiker JK, Crawford DL, Crawford RL (1992) Influence of 2,4,6–trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phane975 rochaete chrysosporium. Appl. Environ. Microbiol. 58: 3199–3202.

    Google Scholar 

  • Stahl JD, Aust SD (1993) Metabolism and detoxification of TNT by Phanerochaete chrysosporium. Biochem. Biophys. Res. Comm. 192: 477–482.

    Google Scholar 

  • Stahl JD, Aust SD (1995) Biodegradation of 2,4,6–trinitrotoluene by the white rot fungus Phanerochaete chrysosporium. In: Spain J, ed. Biodegradation of Nitroaromatic Compounds. New York: Plenum Press, pp. 117–133.

    Google Scholar 

  • Tien K, Kirk T (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization and catalytic properties of a unique H2O2–requiring oxygenase. Proc. Natl. Acad. Sci. 81: 2280–2284.

    Google Scholar 

  • Tien K, Kcheibner K, Hatakka AI, Naveau H, Agathos SN (1999) Transformation and mineralization of 2,4,6–trinitrotoluene (TNT) by manganese peroxidase form the whiterot basidiomycete Phlebia radiata. Biodegradation 10: 83–91.

    Google Scholar 

  • Van Aken B, Skubisz K, Naveau H, Agathos SN (1997) Biodegradation of 2,4,6–trinitrotoluene (TNT) by the white-rot basidiomycete Phlebia radiata. Biotechnol. Lett. 19: 813–817.

    Google Scholar 

  • Vorbeck C, Lenke H, Fischer P, Knackmuss H-J (1994) Identifi-cation of a hydride-Meisenheimer complex as a metabolite of 2,4,6–trinitrotoluene by a Mycobacterium strain. J. Bacteriol. 176: 932–934.

    Google Scholar 

  • Walker JE, Kaplan DL (1992) Biological degradation of explosives and chemical agents. Biodegradation 3: 369–385.

    Google Scholar 

  • Won WD, DiSalvo LH, Ng J (1976) Toxicity and mutagenicity of 2,4,6–trinitrotoluene and its microbial metabolites. Appl. Environ. Microbiol. 31: 576–580.

    Google Scholar 

  • Yinon J (1990) Toxicity and Metabolism of Explosives. Boston: CRC Press, pp. 1–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HY., Song, HG. Transformation of 2,4,6-trinitrotoluene by white rot fungus Irpex lacteus. Biotechnology Letters 22, 969–975 (2000). https://doi.org/10.1023/A:1005636914121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005636914121

Navigation