Journal of Bioenergetics and Biomembranes

, Volume 32, Issue 5, pp 507–515 | Cite as

The Oligomycin Axis of Mitochondrial ATP Synthase: OSCP and the Proton Channel

  • Rodney J. Devenish
  • Mark Prescott
  • Glen M. Boyle
  • Phillip Nagley


Oligomycin has long been known as an inhibitor of mitochondrial ATP synthase, putatively binding the Fo subunits 9 and 6 that contribute to proton channel function of the complex. As its name implies, OSCP is the oligomycin sensitivity-conferring protein necessary for the intact enzyme complex to display sensitivity to oligomycin. Recent advances concerning the structure and mechanism of mitochondrial ATP synthase have led to OSCP now being considered a component of the peripheral stator stalk rather than a central stalk component. How OSCP confers oligomycin sensitivity on the enzyme is unknown, but probably reflects important protein–protein interactions made within the assembled complex and transmitted down the stator stalk, thereby influencing proton channel function. We review here our studies directed toward establishing the stoichiometry, assembly, and function of OSCP in the context of knowledge of the organization of the stator stalk and the proton channel.

Yeast mitochondrial ATP synthase oligomycin sensitivity-conferring protein (OSCP) oligomycin Fo subunit organization proton channel stator stalk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994). Nature (London) 370, 621-628.Google Scholar
  2. Bateson, M., Devenish, R. J., Nagley, P., and Prescott, M. (1996). Anal. Biochem. 238, 14-18.Google Scholar
  3. Bateson, M., Devenish, R. J., Nagley, P., and Prescott, M. (1999). J. Biol. Chem. 274, 7462-7466.Google Scholar
  4. Bottcher, B., Schwartz, L., and Graber, P. (1998). J. Mol. Biol. 281, 757-762.Google Scholar
  5. Boyer, P. D. (1993). Biochim. Biophys. Acta 140, 215-250.Google Scholar
  6. Boyer, P. D. (1997). Annu. Rev. Biochem. 66, 717-749.Google Scholar
  7. Boyer, P. D. (1999). Nature (London) 402, 247-248.Google Scholar
  8. Boyle, G. M., Roucou, X., Nagley, P., Devenish, R. J., and Prescott, M. (2000). J. Bioenerg. Biomembr. 32, 469-481.Google Scholar
  9. Breen, G. A. M., Miller, D. L., Holmans, P. L., and Welch, G. (1986). J. Biol. Chem. 261, 11680-11685.Google Scholar
  10. Capaldi, R. A., Schulenberg, B., Murray, J., and Aggeler, R. (2000). J. Exp. Biol. 203, 29-33.Google Scholar
  11. Collinson, I. R., van Raaij, M. J., Runswick, M. J., Buchanan, S. K., Fearnley, I. M., Skehel, J. M., Orriss, G. L., Miroux, B., and Walker, J. E. (1994). J. Mol. Biol. 242, 408-421.Google Scholar
  12. Collinson, I. R., Skehel, J. M., Fearnley, I. M., Runswick, M. J., and Walker, J. E. (1996). Biochemistry 35, 12640-12646.Google Scholar
  13. Cox, G. B., Jans, D. A., Fimmel, A. L., Gibson, F., and Hatch, L. (1984). Biochim. Biophys. Acta 768, 201-208.Google Scholar
  14. Cox, G. B., Devenish, R. J., Gibson, F., Howitt, S. M., and Nagley, P. (1992). In Molecular Mechanisms in Bioenergetics (Ernster, L., ed.), Elsevier, Amsterdam, pp. 283-315.Google Scholar
  15. Deckers-Hebestreit, G., Greie, J.-C., Stalz, W.-D., and Altendorf, K. (2000). Biochim. Biophys. Acta 1458, 364-373.Google Scholar
  16. Devenish, R. J., Prescott, M., Roucou, X., and Nagley, P. (2000). Biochim. Biophys. Acta 1458, 428-442.Google Scholar
  17. Dimroth, P. (2000). Biochim. Biophys. Acta 1458, 374-386.Google Scholar
  18. Dupuis, A., Satre, M., and Vignais, P. V. (1983). FEBS Lett. 156, 99-102.Google Scholar
  19. Engelbrecht, S., and Junge, W. (1997). FEBS Lett. 414, 485-491.Google Scholar
  20. Fillingame, R. H. (1997). J. Exp. Biol. 200, 217-224.Google Scholar
  21. Fillingame, R. H. (1999). Science 286, 1687-1688.Google Scholar
  22. Fillingame, R. H., Jiang, W., Dmitriev, O. Y., Jones, P. C. (2000). Biochim. Biophys. Acta 1458, 387-403.Google Scholar
  23. Galanis, M., Mattoon, J. R., and Nagley, P. (1989). FEBS Lett. 249, 333-336.Google Scholar
  24. Girvan, M. E., Rastogi, V. K., Abildgaard, F., Markley, J. L. and Fillingame, R. H. (1998). Biochemistry 37, 8817-8824.Google Scholar
  25. Golden, T. R., and Pedersen, P. L. (1998). Biochemistry 37, 13871-13881.Google Scholar
  26. Groth, G. (2000). Biochim. Biophys. Acta 1458, 417-427.Google Scholar
  27. Hadikusumo, R. G., Hertzog, P. J., and Marzuki, S. (1984). Biochim. Biophys. Acta 765, 258-267.Google Scholar
  28. Hazard, A. L., and Senior, A. E. (1994). J. Biol. Chem. 269, 427-432.Google Scholar
  29. Hekman, C., Tomich, J. M., and Hatefi, Y. (1991). J. Biol. Chem. 266, 13564-13571.Google Scholar
  30. John, U. P., and Nagley, P. (1986). FEBS Lett. 207, 79-83.Google Scholar
  31. Joshi, S., Cao, G-J., Nath, C., and Shah, J. (1996). Biochemistry 35, 12094-12103.Google Scholar
  32. Joshi, S., Cao, G-J., Nath, C., and Shah, J. (1997). Biochemistry 36, 10936-10943.Google Scholar
  33. Karrasch, S., and Walker, J. E., (1999). J. Mol. Biol. 290, 379-384.Google Scholar
  34. Kato-Yamada, Y., Noji, H., Yasuda, R., Kinosita Jr., K., and Yoshida, M. (1998). J. Biol. Chem. 273, 19375-19377.Google Scholar
  35. Law, R. H. P., Manon, S., Devenish, R. J., and Nagley, P. (1995). Methods Enzymol. 260, 133-163.Google Scholar
  36. Macino, G., and Tzagoloff, A. (1980). Cell 20, 507-517.Google Scholar
  37. Mao, Y., and Mueller, D. M. (1997). Arch. Biochem. Biophys. 337, 8-16.Google Scholar
  38. McLachlin, D. T., Coveny, A. M., Clark, S. M., and Dunn, S. D. (2000). J. Biol. Chem. 275, 17571-17577.Google Scholar
  39. Mukopadhyay, A., Zhou, X-Q., Uh, M., and Mueller, D. M. (1992). J. Biol. Chem. 267, 25690-25696.Google Scholar
  40. Nagley, P. (1988). Trends Genet. 4, 46-52.Google Scholar
  41. Nagley, P., Hall, R. M., and Ooi, B. G. (1986). FEBS Lett. 195, 159-163.Google Scholar
  42. Nagley, P., and Linnane, A. W. (1987). In Bioenergetics: Structure and Function of Energy Transducing Systems (Ozawa, T., and Papa, S., eds), Japan Scientific Societies Press, Tokyo and Springer-Verlag, Berlin, pp. 191-204.Google Scholar
  43. Noji, H., Yasuda, R., Yoshida, M., and Kinosita Jr., K. (1997). Nature (London) 386, 299-302.Google Scholar
  44. Ogilvie, I., Aggeler, R., and Capaldi, R. A. (1997). J. Biol. Chem. 272, 16652-16656.Google Scholar
  45. Ooi, B. G., Novitski, C. E., and Nagley, P. (1985). Eur. J. Biochem. 152, 709-714.Google Scholar
  46. Ovchinnikov, Y. A., Modyanov, N. N., Grinkevich, V. A., Aldanova, N. A., Trubetskaya, O. E., Hundal, T., and Ernster, L. (1984a). FEBS Lett. 166, 19-22.Google Scholar
  47. Ovchinnikov, Y. A., Modyanov, N. N., Grinkevich, V. A., Kostetsky, P. V., Trubetskaya, O. E., Hundal, T., and Ernster, L. (1984b). FEBS Lett. 175, 109-112.Google Scholar
  48. Penin, F., Archinard, P., Moradi-Ameli, M., and Godinot, C. (1985). Biochim. Biophys. Acta 810, 346-353.Google Scholar
  49. Perlin, D. S., Latchney, L. R., and Senior, A. E. (1985). Biochim. Biophys. Acta 807, 238-244.Google Scholar
  50. Prescott, M., Bush, N., Nagley, P., and Devenish, R. J. (1994). Biochem. Mol. Biol. Int. 34, 789-799.Google Scholar
  51. Prescott, M., Higuti, T., Nagley, P., and Devenish, R. J. (1995). Biochem. Biophys. Res. Commun. 207, 943-949.Google Scholar
  52. Prescott, M., Devenish, R. J., and Nagley, P. (1996). In Protein targeting to mitochondria (Hartl, F.-U., ed.), JAI Press, Greenwich, Connecticut, pp. 299-339.Google Scholar
  53. Pringle, M. J., Kenneally, M. K., and Joshi, S. (1990). J. Biol. Chem. 265, 7632-7637.Google Scholar
  54. Rodgers, A. J. W., and Capaldi, R. A. (1998). J. Biol. Chem. 273, 29406-29410.Google Scholar
  55. Roucou, X., Artika, I. M., Devenish, R. J., and Nagley, P. (1999). Eur. J. Biochem. 261, 444-451.Google Scholar
  56. Sambongi, Y., Iko, Y., Tanabe, M., Omote, H., Iwamoto-Kihara, A., Ueda, I., Yanagida, T., Wada, Y., and Futai, M. (1999). Science 286, 1722-1724.Google Scholar
  57. Sebald, W., Wachter, E., and Tzagoloff, A. (1979). Eur. J. Biochem. 100, 599-607.Google Scholar
  58. Slater, E. C. (1967). Methods Enzymol. X, 48-57.Google Scholar
  59. Slott, E. F., Shade, R. O., and Lansman, R. A. (1983). Mol. Cell. Biol. 3, 1694-1702.Google Scholar
  60. Soubannier, V., Rusconi, F., Vaillier, J., Arselin, G., Chaignepain, S., Graves, P. V., Schmitter, J. M., Zhang, J. L., Mueller, D., and Velours, J. (1999). Biochemistry 38, 15017-15024.Google Scholar
  61. Spannagel, C., Vaillier, J., Chaignepain, S., and Velours, J. (1998). Biochemistry 37, 615-621.Google Scholar
  62. Stephens, A. N., Roucou, X., Artika, I. M., Devenish, R. J., and Nagley, P. (2000). Eur. J. Biochem. 267, 6443-6451.Google Scholar
  63. Stock, D., Leslie, A. G. W., and Walker, J. E. (1999). Science 286, 1700-1705.Google Scholar
  64. Straffon, A. F. L., Prescott, M., Nagley, N., and Devenish, R. J. (1998). Biochim. Biophys. Acta 1371, 157-162.Google Scholar
  65. Svergun, D. I., Aldag, I., Sieck, T., Altendorf, K., Koch, M. H. J., Kane, D. J., Kozin, M. B., and Gruber, G. (1998). Biophys. J. 75, 2212-2219.Google Scholar
  66. Tzagoloff, A. (1970). J. Biol. Chem. 245, 1545-1551.Google Scholar
  67. Velours, J., Spannagel, C., Chaignepain, S., Vaillier, J., Arselin, G., Graves, P. V., Velours, G., and Camougrand, N. (1998). Biochimie 80, 793-801.Google Scholar
  68. Velours, J., Paumard, P., Soubannier, V., Spannagel, C., Vaillier, J., Arselin, G., and Graves, P.-V. (2000). Biochim. Biophys. Acta 1458, 443-456.Google Scholar
  69. Vik, S. B., Long, J. C., Wada, T., and Zhang, D. (2000). Biochim. Biophys. Acta 1458, 457-466.Google Scholar
  70. Weber, J., and Senior, A. E. (1997). Biochim. Biophys. Acta 1319, 19-58.Google Scholar
  71. Willson T. W., and Nagley, P. (1987). Eur. J. Biochem. 167, 291-297.Google Scholar
  72. Wilkens, S., and Capaldi, R. A. (1998). Nature (London) 393, 29.Google Scholar
  73. Wilkens, S., Zhou, J., Nakayama, R., Dunn, S. D., and Capaldi, R. A. (2000). J. Mol. Biol. 295, 387-391.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Rodney J. Devenish
    • 1
  • Mark Prescott
    • 1
  • Glen M. Boyle
    • 2
  • Phillip Nagley
    • 3
  1. 1.Department of Biochemistry and Molecular BiologyMonash UniversityAustralia
  2. 2.Queensland Institute of Medical ResearchHerstonAustralia
  3. 3.Department of Biochemistry and Molecular BiologyMonash UniversityAustralia

Personalised recommendations